

Annual Review 2023/24

Redirect Recycling Wetherill Park

24 Davis Road, Wetherill Park NSW

Redirect Recycling

22 October 2024

Revision History

Rev	Revision	Author /	Details	Authorised	
No.	Date	Position		Name / Position	Signature
1	22/10/2024	James Sutton	For	James Sutton	***
		Environmental	submission	Environmental	Sulta
		Manager	to DPHI	Manager	

Table of Contents

1		Introduction	4
	1.1	Scope	
	1.2	Background	4
	1.3	Consent	
	1.4	Annual Review Requirements	
	1.5	Environment Protection Licence	
	1.6	Water Licences	
	1.7	Trade Waste Licence	
	1.8	Environmental Management Plans	
	1.9	Contacts	
	1.10	Actions Required from Previous Annual Review	
2		Operations during the Reporting Period	
	2.1	Production	
	2.2	Facility Improvements	
	2.3	Site Activities	
3		Waste Management	
	3.1	Solid Waste	
_	3.2	Trade Waste	
4		Environmental Monitoring and Performance	
	4.1	Environmental Management System	
	4.2	Air Quality	
	4.3	Surface Water	
	4.4	Groundwater	
	4.5	Noise	
_	4.6	Traffic	
5		Community Relations	
	5.1	Environmental Complaints	
_	5.2	Community Liaison	
6		Independent Audit	
7		Environmental Incidents & Non-compliances	
		ncidents	
	7.2 N	lon-conformances	
8		Activities Proposed for the next Annual Review Period	26
Α	PPE	NDICIES	27
Α	pper	ndix A – Annual Surface Water and Baseline Groundwater	r
		tion Report	
		ndix B – Example Quarterly OEMP Checklist	
		ndix C – Appendix D – Community Complaints	
~	hhai	idix 6 – Appendix D – Community Complaints	JU
Fi	aure	1 Regional Context	
Fi	aure	2 SSD 7401 Approved Development Area	1
		3 Groundwater Monitoring Locations	

Annual Review Title Block

Name of operation	Redirect Recycling
Name of operator	Redirect Recycling
Development consent / project approval #	SSD 7401
Name of holder of development consent / project approval	Bettergrow Pty Ltd
Mining lease #	N/A
Name of holder of mining lease	N/A
Water Access Licence #	N/A
Name of holder of water licence	N/A
MOP/RMP start date	N/A
MOP/RMP end date	N/A

I, James Sutton, certify that this audit report is a true and accurate record of the compliance status of Redirect Recycling Pty Ltd for the period 23rd August 2023 to 22nd August 2024 and that I am authorised to make this statement on behalf of Redirect Recycling Pty Ltd Note.

- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual, \$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement—maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment, \$22,000, or both.)

Name of authorised reporting officer	James Sutton
Title of authorised reporting officer	Environment Manager
Signature of authorised reporting officer	J. Sutto
Date	22/10/2024

1 Introduction

1.1 Scope

This Annual Review has been prepared for the Redirect Recycling Pty Ltd (reDirect) Wetherill Park site and covers the twelve-month reporting period from 23 August 2023 to 22 August 2024. This Annual Review has been prepared to satisfy condition C9 of Development Consent SSD 7401 issued by the Minister for Planning on 11 October 2017.

The reDirect facility is located at 24 Davis Road, Wetherill Park NSW and consists of a resource recovery facility purpose built for washing and processing of construction and liquid waste.

This Annual Review is submitted to NSW Department of Planning, Housing and Infrastructure (DPHI). The Annual Review is also made available on the reDirect website:

Redirect Recycling

reDirect maintained compliance with all necessary approvals and licenses (EPL 21092 & SSD-7401) during the reporting period recording nil non-compliance items.

Table 1 Compliance

Relevant approval	Condition	Condition description (summary)	Compliance status	Comment	Where addressed in Annual Review
SSD 7401	C9	Annual review	Compliant	Nil	1.4 Annual Review Requirements
EPL 21092	L3.1	Noise	Compliant	Nil	Section 4.5 Noise
EPL 21092	O3.1	Air Quality	Compliant	Nil	Section 4.2 Air Quality
EPL 21092	O5	Water Quality	Compliant	Nil	4.3 Surface Water & 4.4 Groundwater

1.2 Background

Consent for State Significant Development 7401 (SSD-7401) was initially granted by the NSW Department of Planning Housing and Infrastructure (DPHI) on 22 December 2017. The facility was commissioned in August 2022 and shortly after the licence was transferred to reDirect (a Borg Company) who currently operate the site (see Figure 1).

Figure 1 Regional Context

The development has been staged with only the wash plant operational at this time. The landscape supplies food and garden organics approvals are not operational. Stage 1 includes the wash plant processing area only. Facilities covered under Stage 1 include:

- A main administration building, office and carpark constructed at the fore of the property. Site amenities, including toilets and kitchen, contained in the main administration building.
- Partially enclosed shed space, containing:
 - o Two tier ground levels with external ramp to the west of the shed.
 - o Four hydro-tips, and one dry feed hopper.
 - One weighbridge located west of the shed for the weighing of trucks on entry and prior to departure from the facility.
 - Screening walls.
 - Drill mud processing plant and equipment.
 - Drill mud machinery control rooms and internal office space.
- An inground sand filter located under the hardstand on the lower level of the site, adjacent to the south-western corner of the existing approved shed, to be used for stormwater retention and treatment.
- Rainwater / raw water storage tanks.
- Main thoroughfare, including:
 - A combined ingress/egress access driveway, providing a 12.5 m width at the western property boundary and facilitating connectivity between the off-street parking and internal heavy vehicle circulation areas.
 - Off-street parking spaces designed in accordance with AS2890.1 and AS2890.6.

- A combined ingress / egress driveway, providing a 5.5 m width adjacent to the eastern property boundary facilitating service access to the office complex and emergency access for Fire NSW.
- Internal hardstand areas and roadways.

The main waste types and materials accepted at the site include:

- Hydro-excavation and drill muds;
- Concrete slurry;
- Stormwater:
- · Street sweepings; and
- General solid waste (soils that meet EPL conditions).

1.3 Consent

Consent for State Significant Development 7401 (SSD-7401) was initially granted by the then NSW Department of Planning and Environment (DPHI) on 22 December 2017. Consent for Modification 1 of SSD-7401 (SSD-7401-MOD-1) was approved by the NSW Department of Planning, Industry and Environment (DPIE) on 21 April 2021, with consent for Modification 2 (SSD-7401-MOD-2) granted on 30 November 2021. Consent for Modification 3 (SSD-7401-MOD-3) was granted by DPHI (name reverted from DPIE) on 1 April 2022. Consent for Modification 4 (SSD-7401-MOD-4) was granted by Department of Planning, Housing and Infrastructure (DPHI) (name reverted from DPHI).

Approval for SSD-7401 permitted the construction and operation of a resource recovery facility to process up to 160,000 tonnes per year of waste comprising of:

- 60,000 tonnes per annum (tpa) of hydro-excavation, drill muds and fluids.
- 70,000 tpa of food and garden organics.
- 30,000 tpa of packaged and bulk food and liquids.

In addition, the approval for SSD-7401 allowed for the operation of a landscaping material supplies facility for the storage and sale of up to 40,000 tpa of landscaping supplies.

Approval of SSD-7401-MOD-1 allowed for the increase of processing capacity to 350,000 tpa in conjunction with the following:

- Introduction of additional waste streams.
- Demolition of existing structures.
- · Construction of a partially enclosed shed.

SSD-7401-MOD-2 included the replacement of the 30, 000 L sediment basin and associated bioretention basin, located within the southwest corner of the subject site. In lieu of the detention and bioretention basins it was proposed to utilise an existing inground concrete pit that remains onsite as part of a decommissioned weighbridge. This pit was modified and improved to include a sand filter to treat onsite stormwater.

SSD-7401-MOD-3 included the following:

- Replacement of the five (5) approved weighbridges with one (1) 25 m by 4.2 m weighbridge located approximately 55 m from the Facility intersection with Davis Road.
- To facilitate weighbridge installation and improve site safety, vehicle parking spaces were reconfigured:
 - o Five (5) parking spaces immediately east of the existing site office.
 - Two (2) parking spaces located north of the inground sand filter, abutting the western facade of the drill muds processing shed.

- Five (5) parking spaces located on the hardstand area immediately north of the western parcel of retained Cumberland Plain Woodland.
- Remaining parking spaces were not altered.
- Relocation of proposed humeceptor water treatment device to the north-western corner of the central portion of Cumberland Plain Woodland onsite.
- Relocation of the 5,000 L rainwater tank to inside drill muds processing shed next to the control room. Rainwater from the existing office will now be captured via the Facility stormwater network.

SSD-7401-MOD-4 included an administrative amendment to reflect additional waste streams of concrete slurry and stormwater, originally assessed as appropriate in Modification 1, in the limits of consent.

This Annual Review covers facility operations conducted under Stage 1 of SSD-7401 (including modifications). Stage 2 (bulk landscape area and the organics processing area) is not operational, therefore assessment of conditions specific to Stage 2 have not been triggered or included within this report.

A summary of development consents including modifications currently held by Bettergrow Pty limited (original applicant) is presented in Table 2.

Table 2 Development Consents

Consent Description	Approval Date	Approval Authority	Approved Development
Development Consent SSD 7401	22 December 2017	NSW Minister for Planning	The construction and operation of a resource recovery facility to process up to
			160,000 tonnes per year of waste comprising of:
			60,000 tpa of hydro-excavation, drill muds and fluids;
			 70,000 tpa of food and garden organics; and
			• 30,000 tpa of packaged and bulk food and liquids.
			The operation of a landscaping material supplies facility for the storage and
			sale of up to 40,000 tpa of landscaping supplies.
Development Consent SSD 7401 MOD 1	21 April 2021	NSW Minister for Planning	Increase the processing capacity to 350,000 tpa of waste; introduce additional waste streams; demolish existing structures; construct a partially
			enclosed shed; and increase the hours of operation to 24/7.
Development Consent SSD 7401 MOD 2	30 November 2021	NSW Minister for Planning	Amend the stormwater management system to include the use of an in-ground concrete pit with sand filter.

Consent Description	Approval Date	Approval Authority	Approved Development
Development Consent SSD 7401 MOD 3	31 March 2022	NSW Minister for Planning	Amend the carparking configuration, replace the five on-site weighbridges with one weighbridge, relocate the 5 kilolitre underground rainwater tank to an above ground tank inside the drill muds processing shed and replace and relocate the Humeceptor with an Ecoceptor.
Development Consent SSD 7401 MOD 4	25 January 2024	NSW Minister for Planning	Administrative amendment to reflect additional waste streams of concrete slurry and stormwater, originally assessed as appropriate in Modification 1, in the limits of consent.

1.4 Annual Review Requirements

In accordance with condition C9 of Development Consent SSD 7401, annual review requirements and the sections within this review where these are addressed have been summarised in Table 3.

Table 3 Annual Review Requirements

Develo	oment Consent SSD 7401 – Condition C9	Section of Annual Review		
	ar, the Applicant must review the environmental performance of the ment to the satisfaction of the Planning Secretary. This review must:	This Report		
(a)	describe the development that was carried out in the previous calendar year, and the Development that is proposed to be carried out over the next year;	Section 2 Section 8		
(b)	include a comprehensive review of the monitoring results and complaints records of the Development over the previous reporting period, which includes a comparison of these results against the: i. the relevant statutory requirements, limits or performance measures/criteria:	Section 4 Section 5		
	 ii. requirements of any plan or program required under this consent; iii. the monitoring results of previous years; and iv. the relevant predictions in the EIS; 			
(c)	identify any non-compliance during the reporting period, and describe what actions were (or are being) taken to ensure compliance;	Section 4 Section 7		
(d)	identify any trends in the monitoring data over the life of the Development;	Section 4		
(e)	se) identify any discrepancies between the predicted and actual impacts of the Development, and analyse the potential cause of any significant discrepancies; and			
(f)	describe what measures will be implemented over the next reporting period to improve the environmental performance of the Development.	Section 8		

1.5 Environment Protection Licence

reDirect operates in accordance with Environment Protection Licence 21092 (EPL 21092), issued by the NSW Environment Protection Authority (EPA) under Section 55 of the *Protection of the Environment Operations Act 1997*. The current Licence version date is 01 June 2023.

1.6 Water Licences

reDirect does not hold any water licences.

1.7 Trade Waste Licence

reDirect's Trade Waste Service Contract with Sydney Water for the discharge of liquid trade waste into Sydney Water's sewerage system was initially approved on 01 August 2022 prior to the site's operational start date (23 August 2022). Throughout the reporting period, trade wastewater sampling was conducted every 60 days or on the day the trade waste was discharged thereafter. Substance characteristics analysed included:

- Biochemical Oxygen Demand
- Ammonia (As N)
- Sulphate
- Suspended Solids
- Total Dissolved Solids

reDirect have not had any trade waste sampling results exceed the criteria. Results were consistent with the previous reporting year (2022/2023).

1.8 Environmental Management Plans

As per Schedule 2 Part C of SSD 7401, the existing development is carried out in accordance with the Operational Environmental Management Plan (OEMP) and associated sub-plans.

In accordance with C8 Revision of Strategies, Plans and Programs, environmental management plans are required to be reviewed within three months of completion of an audit under C14 and/or approval of an annual report review under C9.

reDirect received correspondence from DPHI (8 December 2023) determining the 2023 Independent Environmental Audit to generally satisfy the reporting requirements of the consent and the NSW Planning *Independent Audit Post Approval Requirements* (2020). Additional correspondence was also received from DPHI (10 January 2024) determining the Annual review undertaken for the period 23 August 2022 to 22 August 2023 to generally satisfy the reporting requirements of the consent.

In accordance with C8 reDirect conducted a review of all management plans accordingly. The following management plans were reviewed.

- Operational Environmental Management Plan
- Air Quality and Odour Management Plan
- Stormwater Management Plan
- Operational Waste Management Plan
- Flood Emergency Plan
- Water Management Plan
- Emergency Plan
- Operational Traffic Management Plan
- Conceptual Decommissioning management Plan

Based on the findings of the previous Independent environmental Audit and Annual Review, no changes were deemed required to any of the management plans. A record of the review

was recorded in the relevant document control section of each management plan and the plans re-published on the reDirect website on 10 January 2024.

1.9 Contacts

Table 4 outlines the contact details for site personnel responsible for managing environmental operations at the reDirect facility.

Table 4 Site Personnel

Name	Title	Contact Details
Neale Hogarth	Manager	0498 692 443
James Sutton	Environmental Manager	0414 987 168

1.10 Actions Required from Previous Annual Review

Table 5 represents activities proposed in Section 8 of Annual Review 22/23 and corresponding comments regarding outcomes of those proposed activities.

Table 5 Proposed Activities in 2023/24 Reporting Period

Activities Proposed in Reporting Period	Results achieved in Reporting Period
Ongoing implementation of Environmental Management Plans for the existing development and the project.	Operational staff have continued to implement daily inspection checklists (as required under OEMP). No non-compliance or notifiable incidents have occurred.
Complete installation of new centrifuge to increase efficiency in material processing.	New centrifuge was installed and commissioned in November 2023.
Attain new site-specific resource recovery order and exemption (SSRRO/E) for processed materials allowing new uses and increased efficiency for resource recovery activities.	Approved SSRRO/E's: The reDirect washed clay fines order July 2024 The reDirect washed sand order July 2024 The reDirect washed aggregate order July 2024 The reDirect washed clay fines exemption July 2024 The reDirect washed sand exemption July 2024 The reDirect washed aggregate exemption July 2024
Continue erosion and sediment control inspections and rectification works as necessary to manage stormwater discharge.	Operational staff have continued to implement daily inspection checklists (as required under OEMP). Checklist have documented regular sweeping of the site, inspection and maintenance of sediment control infrastructure.
Update current operational management plans to reflect recommendations from audit and findings from annual review.	Operational management plans were reviewed following the completion of the previous 2023 Independent Environment Audit and Annual Review. No changes were deemed required; the review was recorded in each respective document control table.

2 Operations during the Reporting Period

2.1 Production

Development Consent SSD 7401 allows for the receival and processing of up to 350,000 tonnes of waste per year, including 100,000 tonnes of liquid waste and 150,000 tonnes of general solid waste. During the reporting period reDirect received and processed a total of 80,031.08 tonnes of combined liquid and general solid waste. A total of 48977.81 tonnes were

recovered and beneficially reused under applicable resource recovery orders, 184.02 tonnes were sent for lawful disposal, comprising of trash and light organics.

2.2 Facility Improvements

The following improvements were made to site infrastructure, plant and/or equipment during the reporting period:

 Installation of a second centrifuge for increased processing efficiency and ability to continue processing in case of breakdown or maintenance.

See Figure 2 for location of site infrastructure.

2.3 Site Activities

Environmental commitments and management/mitigation measures that were applied during the reporting period include the following:

- Operational works undertaken in accordance with the Operational Environmental Management Plan and sub-plans;
- Surface water sampling events;
- Background groundwater quality sampling events;
- Site environmental inspections; and
- Site wide communication of environmental requirements via inductions and Toolbox Talks.

No activities associated with additional construction were undertaken within the reporting period.

3 Waste Management

Waste generated at the reDirect site is managed in accordance with the Waste Management Plan that has been developed for the facility. The management process incorporates a system of recycling and reuse of waste materials where possible. Waste that cannot be incorporated into this system is removed from site and taken to landfill for lawful disposal.

3.1 Solid Waste

A summary of waste and resource recovery materials removed from reDirect Wetherill Park during the reporting period is provided in Table 6.

Table 6 Waste Management 2023/24

Month	Destination			
	Tonnes	Waste	Reuse / Disposal	
September	948.22	Recovered aggregate 5-20mm		
2023	32.76	Recovered aggregate 20-40mm		
	1402.54	Treated drill mud	Resource recovery material	
	609.02	Washed sand		
October 2023	445.58	Recovered aggregate 5-20mm		
	543.96	Recovered aggregate 20-40mm	December 1	
	1349.90	Treated drill mud	Resource recovery material	
	1476.82	Washed sand		
November 2023		Recovered aggregate 5-20mm		
	1361.26	Recovered aggregate 20-40mm		
	470.24	Recovered aggregate 40-80mm	Resource recovery material	
	1817.18	Treated drill mud		
	1232.44	Washed sand		
December 2023	37.48	Recovered aggregate 5-20mm		
	1674.08	Treated drill mud	Resource recovery material	
	774.40	Washed sand		
January 2024	43.30	Organics / light trash	Central Waste – Kurri Kurri	
	144.84	Recovered aggregate 5-20mm		
	202.72	Recovered aggregate 40-80mm	December we serve we week wind	
	2186.38	Treated drill mud	Resource recovery material	
	624.42	Washed sand		
February 2024	357.82	Recovered aggregate 5-20mm		
	105.46	Recovered aggregate 20-40mm		
	2373.38	Treated drill mud	Resource recovery material	
	407.60	Washed sand		

March 2024	404.00	B	
IVIAIUII ZUZ4	134.32	Recovered aggregate 5-20mm	
	3236.43	Treated drill mud	Resource recovery material
	918.84	Washed sand	
April 2024	247.10	Recovered aggregate 5-20mm	
	4051.19	Treated drill mud	Resource recovery material
	891.56	Washed sand	
May 2024	139.74	Recovered aggregate 5-20mm	
	36.50	Recovered aggregate 20-40mm	
	73.10	Recovered aggregate 40-80mm	Resource recovery material
	3940.91	Treated drill mud	
	862.14	Washed sand	
June 2024	140.72	Organics / light trash	Central Waste – Kurri Kurri
	188.14	Recovered aggregate 5-20mm	
	86.98	Recovered aggregate 20-40mm	
	33.38	Recovered aggregate 40-80mm	Resource recovery material
	2973.22	Treated drill mud	
	1203.06	Washed sand	
July 2024	317.88	Recovered aggregate 5-20mm	
	2580.12	Treated drill mud	Resource recovery material
	1093.76	Washed sand	
August 2024	41.86	Recovered aggregate 5-20mm	Resource recovery material
	3392.72	Treated drill mud	
	699.94	Washed sand	
TOTAL	184.02	Organics / light trash	Wanless Waste Management Kemps Creek
	4050.5	Recovered Aggregate 05–20mm	Resource recovery material
	2166.92	Recovered Aggregate 20–40mm	Resource recovery material
	779.44	Recovered Aggregate 40–80mm	Resource recovery material
	30978.05	Treated Drilling Mud	Resource recovery material
	10794	Washed Sand	Resource recovery material

Waste types in Table 6 are further described as:

- Organics and Light Trash: General waste including a mix of organics such as sticks, leaf litter and other organic matter mixed with light film plastic and other small anthropogenic inclusions.
- Resource Recovery Material: Material meeting a general or site-specific resource recovery order made under clause 93 of the 2014 Waste Regulation and/or section 286A of the Protection of the Environment Operations Act 1997.

There was no trackable waste generated during this reporting period.

3.2 Trade Waste

Redirect's current trade waste agreement (Consent no: 51950) allows for the following discharge rates to Sydney Water's wastewater system:

- Instantaneous maximum rate of pumped discharge 8,000 litres per second
- Maximum daily discharge 320 kilolitres
- Average daily discharge 200 kilolitres

The last sampling event conducted during the reporting period was completed on 24 July 2024, 29 days prior to the end of the reporting period. A total of 147 kilolitres were discharged during the sampling event, well below the average and maximum daily discharge limits. Additionally, sampling completed since the commencement of the agreement confirmed a total of 83515.33 kilolitres had been disposed as trade waste up to this date, equating to a daily average below 200 kilolitres.

Water discharged to trade waste has nearly doubled when compared to the readings comparable from the previous reporting year (23 August 2023 - 02 August 2024, 20,487 Kilolitres and 02 August 2023 - 24 July 2024, 55,028.33 Kilolitres). This increase is attributed to increased waste throughput in the facilities second full operational year.

4 Environmental Monitoring and Performance

4.1 Environmental Management System

ReDirect operates in accordance with the Operational Environmental Management Plan (OEMP) as documented in Section 1.8. This OEMP aims to ensure adequate management, monitoring and mitigation systems are in place to protect the surrounding environment. Similarly, construction activities are undertaken in accordance with the Construction Environmental Management Plan (CEMP).

Environmental performance and management are conducted in accordance with the requirements of SSD 7401, its subsequent modifications (MOD1, MOD2, MOD3 & MOD4), and EPL 21092. Environmental performance and monitoring are an integral part of environmental management system. The measurement and evaluation of monitoring results allows for the assessment of performance against quantitative and qualitative standards and assists in the identification of any non-conformances or areas that may require additional attention.

4.2 Air Quality

Air quality is monitored in accordance with the reDirect's Operational Air Quality and Odour Management Plan (AQOMP). Condition O3.1 of EPL 21092 states that:

Additionally, Condition L5.1 of EPL 21092 states that:

[&]quot;The premises must be maintained in a condition which minimises or prevents the emission of dust from the premises."

[&]quot;The licensee must not cause or permit the emission of offensive odour beyond the boundary of the premises."

EPL 21092 does not specify dust monitoring be undertaken, the AQOMP assessed material handling and processing in the drill mud processing plant to have minimal fugitive dust emissions due to the high moisture content of waste received and retained within recovered processed materials. Additionally, road surfaces at the Site are sealed and processing is undertaken within the partially enclosed shed, currently no other activities approved under SSD-7401 are undertaken as part of the development. All current dust management procedures undertaken as part of the AQOMP and OEMP are currently deemed suitable and effective.

As Stage 1 operations only involves the drill mud processing plant, dust emissions have been identified as the only air quality impact associated with these operations. Therefore, no management of odour generating activities was required during the reporting period.

4.3 Surface Water

Surface water is considered any water other than process water, leachate or wastewater being defined as:

- Process water is water used in the processing of drill muds.
- Leachate is water generated through rain coming into contact with soil stockpiles.
 Leachate is not anticipated to be generated onsite during Stage 1 of operations due to bulk storage bays being underneath the main processing shed.
- Wastewater is water generated through the processing of drill muds that require disposal or have no further use on site.

Surface water is, thus, principally stormwater runoff from building roofs and areas outside waste processing or handling areas.

Surface water discharges from operational areas of the site and areas with potential to discharge off-site are summarised in the following table. Surface water may also discharge from other areas of the site, but these areas are away from operational areas.

Table 7 Surface Water Sources and Management

Site Feature	Purpose	Runoff Water Sources	Management
Entrance Driveway	Site access	The driveway receives runoff from paved areas near the weighbridge and entrance areas.	Management under the surface water management plan – though this is considered a low risk of impact.
Drill Mud Processing Shed	Rainwater re- use	A portion of roof water runoff from the drill mud processing shed is to be directed by downpipes to an above-ground rainwater harvesting tank which has been sized to meet the facility's reuse demand for non-potable water of 5 kL. The harvested volume from the shed roof is reused internally through the amenities connections with tank overflows being diverted directly to the stormwater system. The remainder of the roof water collected is to be directed to the stormwater system.	Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly. Regularly check the structural integrity of the tanks. Check for any accumulated litter, sediment, or debris on or within the tanks.
Stormwater System	Collection, treatment and transportation	Runoff from majority of sealed surfaces on the site, all roof areas not connected to the rainwater tank	Management under the stormwater management plan (Eclipse 2021) and the WMP.

of stor	,	d rainwater tank overflow rted into the stormwater	Remove deposited sediment and debris from the sand filter bed/detention pit and Ecoceptor inlet/outlet areas. Regularly check the structural integrity of
			hydraulic structures.

In accordance with the reDirect Water Management Plan, six-monthly (following a rainfall event) sampling of two sampling points on-site (SW1 in the sand filter and SW2 in the ecoceptor outflow sampling point) was undertaken during this reporting period.

A summary of the results is presented in Table 8 and Table 9.

Table 8 Surface Water Observations and Geotechnical Requirements

Location	Event	Dissolved Oxygen (mg/L)	Electrical Conductivity (μs/cm)	рН	Redox (Eh) (mV)	Temperature (°C)	Observations
SW1 (untreated water)	February 2024	3.07	574	7.51	307	23.9	Colourless, no odour, no sheen, suspended sediments
	July 2024	1.06	334	7.08	243	13.6	Light grey brown, no odour, no sheen, moderately turbid
Location	Event	Dissolved Oxygen (mg/L)	Electrical Conductivity (μs/cm)	рН	Redox (Eh) (mV)	Temperature (°C)	Observations
SW2 (treated water)	February 2024	4.19	656	7.70	286	25.0	Colourless, no odour, no sheen, suspended sediments
	July 2024	6.09	370	8.48	187	13.7	Light grey, no odour, no sheen, slightly turbid
	•		•		•	·	•

Table 9 Surface Water Analytical Summ

Analyte / Value	Screening Criter	ia Exceedances		Comment		
	Health-Risk	Ecological Risk	Aesthetics			
Heavy metals and metalloids	None identified	Heavy metal concentrations were reported at low levels, less than	Fig.	Metal concentrations were generally less than or similar to relevant screening criteria for disturbed ecosystems consistent with the WMP.		
		relevant screening criteria for highly disturbed environments, with the exceptions of:		Reported copper concentrations were slightly elevated above ecological screening criteria at both SW1 (untreated) and SW2 (treated), indicating that the treatment train has not reduced copper concentrations in the stormwater.		
		Copper (at SW1 and SW2 in February 2024 and July 2024). Zinc (at SW2 in July 2024).		The reported zinc concentrations at SW2 in February 2024 and July 2024 were higher than reported in SW1. This scenario was also noted in August 2023. The cause for the increase in zinc concentrations is unclear, but may be related to the treatment train and should be reviewed. The average concentration of zinc in SW2 over the four sampling events in 2023 and 2024 (0.02 mg/L) was also above the ecological criterion.		
Nutrients	None identified	No exceedances for toxicants. Exceedances of conservative physical stressor values for total oxidised nitrogen (as N), TN and TP at SWM and SWD in both	×25	Concentrations are similar to the median values for TN (1.7 mg/L) and TP (0.31 mg/L) in stormwater runoff in urban or commercial/industrial areas in east coast Australia reported by Drapper et al (2022) and Fletcher et al (2004). TN concentrations are generally less than DGV (90% spp) for nitrate (as N) (5.6 mg/L). The concentrations of TN and TP were lower in SW2 (treated) than in SW1 (untreated). This is further		
		February 2024 and July 2024.		discussed below.		
Organic CoPC	None identified	Exceedance of TRH >C10-C16	None identified	BTEX, PAHs and phenois were not detected in water samples.		
		fraction minus naphthalene (F2) at SW1 in February 2024.		TRH >C10-C16 fraction minus naphthalene (F2) exceeded the ecological criteria at SW1 in February 2024, but was reported below the laboratory limit of reporting (LOR) in SW2, indicating that the treatment train was effective in removing the petroleum contamination. The concentrations of TRH in both SW1 and SW2 were below the LOR in July 2024, potentially indicating that there may have been an unreported or undetected spill or leak of petroleum products during February 2024.		
Physico-chemical Parameters	None identified	None identified	None identified	The TSS was almost two orders of magnitude greater in July 2024 compared to February 2024 at SW1, which may be related to the rainfall preceding both events. The concentrations reported in SW2 were lower (by at least one order of magnitude), indicating that the treatment train is effective in reducing the TSS concentration under a range of furbidity conditions.		

There are indications that concentrations of key parameters (TSS, TN and TP) are lower at SW2 (downstream of treatment train) than SW1 (upstream of system), which was also noted during the 2023 sampling events. The water, sediment and erosion controls in the WMP should continue to be followed to minimise migration of sediments and fines into the stormwater system. Annual surface water monitoring should continue from both SW1 and SW2.

A copy of the *Annual Surface Water and Baseline Groundwater Condition Report - 2024* (Senversa, 2024) has been included in Appendix A.

4.4 Groundwater

In accordance with the reDirect Water Management Plan, a monitoring network was established, including the installation of 6 shallow groundwater monitoring wells that intersect the water table located within the shale bedrock.

These new wells were installed as part of the site infrastructure upgrades. Senversa (engaged by reDirect) designed a groundwater monitoring network that seeks to characterise groundwater both hydraulically up-gradient and down-gradient of the site. The location of the groundwater monitoring wells is presented on **Figure 3**. The groundwater monitoring network comprises:

 One well (MW06) that captures the quality of background groundwater migrating onto the site from the north.

- Five wells (MW01, MW02, MW03, MW04, MW05) placed in targeted locations with the following rationale.
- MW01 Down gradient of the stormwater treatment sand filter box.
- MW02 Down gradient of the Ecoceptor.
- MW03 Western site boundary down gradient of neighbouring property.
- MW04 Down gradient of the drill mud processing facility on eastern boundary.
- MW05 Middle level of site in the vicinity of the historic aboveground storage tanks (ASTs).

The wells target the shallow groundwater as this is most susceptible to impact.

Figure 3 Groundwater Monitoring Locations

A baseline monitoring event is required, with ongoing groundwater monitoring conducted on a periodic basis. Additional monitoring will likely be required - triggered as a response to changes in site activities such as the commencement of Stage 2 operations. The monitoring locations, and sampling, analytical and reporting schedules are provided in Table 10.

Table 10 Groundwater Monitoring Frequency

Frequency	Monitoring Aspect	Locations	Analytical Schedule	Reporting Schedule
Sampling every 6 months for a two year period	Gauging, <u>sampling</u> and analysis	MW01, MW02, MW03, MW04, MW05, MW06	Field: pH, electrical conductivity (EC), dissolved oxygen (DO) and redox potential. Laboratory: Ammonia (as N), nitrate, TN, TP, dissolved metals, TPH, BTEX, PAH.	Interpretive baseline report
Annual, then reviewed after three years	Gauging, <u>sampling</u> and analysis	MW01, MW02, MW03, MW04, MW05, MW06	Field: pH, EC, DO and redox potential. Laboratory: TRH, TN, JP and dissolved metals. Additional contaminants based on the findings of the baseline assessment.	Annual data report, then 3- year interpretative report
Triggered	Sampling and analysis*	As required*	As required*	Reporting as above
	Sampling every 6 months for a two year period Annual, then reviewed after three years	Sampling every 6 months for a two year period Annual, then reviewed after three years Gauging, sampling and analysis Gauging, sampling and analysis	Sampling every 6 months for a two year period Annual, then reviewed after three years Gauging, sampling and analysis Gauging, sampling and analysis MW01, MW02, MW05, MW06 MW01, MW02, MW06 MW01, MW02, MW06	Sampling every 6 months for a two year period Annual, then reviewed after three years Gauging, sampling and analysis MW01, MW02, MW04, MW05, MW06 MW01, MW02, MW04, MW05, MW06 MW01, MW02, MW04, MW05, MW06 MW01, MW02, MW04, MW02, MW04, MW03, MW04, MW03, MW04, MW05, MW06 MW01, MW02, MW06 MW01, MW02, MW02, MW01, MW02, MW03, MW04, MW03, MW04, MW05, MW06 MW01, MW02, MW06 MW01, MW02, MW02, MW04, MW03, MW04, MW03, MW04, MW05, MW06 MW01, MW02, MW06 MW03, MW04, MW06 MW01, MW02, MW06 MW03, MW04, MW06 MW01, MW02, MW06 MW03, MW04, MW06 MW01, MW02, MW06 MW01, MW02, MW06 MW01, MW02, MW06 MW03, MW04, MW06 MW03, MW06 MW03, MW06 MW03, MW06 MW03,

All sampling was undertaken by a suitably qualified and experienced person consistent with guidance in:

- DEC (2004). Approved Methods for Sampling and Analysis of Water Pollutants in NSW. March 2004.
- AS/NZS 5667.1:1998, Water Quality Sampling series.
- NEPC (2013). Schedule B (2) Guideline on Site Characterisation.

Appropriate data QA/QC procedures consistent with the above guidance were implemented and assessed as part of the program.

All analyses was conducted by a NATA accredited laboratory.

Groundwater management reporting requirements are outlined in Table 11.

Table 11 Groundwater Reporting Requirements

Report Type Content Details of monitoring scope and methods, and any non-conformances with this WMP. Baseline Groundwater Assessment Report Digitisation and analysis of historic groundwater monitoring results. (following completion of A plan showing monitoring locations. sampling) A plan showing groundwater elevations and inferred flow. Field records, calibration certificates and laboratory analytical certificates. Combined results for the first four monitoring events, including summary tables of gauging, field measurements and analytical data. Comparison of analytical results against performance criteria and historic results. Review of QA/QC. Statistical analysis of historical data for key chemicals of concern, including the mean, minimum, maximum, 80th percentile of site background groundwater quality (MW06) and baseline groundwater quality (at newly installed wells) to allow future comparison to Reporting shall be conducted in accordance with NSW EPA made or approved guidance. Details of monitoring scope and methods, and any non-conformances with this WMP. Data Report (annual) A plan showing monitoring locations. Field records, calibration certificates and laboratory analytical certificates. Tabulated results (gauging, field measurements and analytical data). Comparison of analytical results against performance criteria and baseline.

Condition L1 of the EPL states that the licensee must comply with section 120 of the POEO Act, which prohibits the pollution of waters. Assessment of groundwater quality will principally be via comparison against baseline and site background conditions. Table 12 below summarises the groundwater quality criteria to be adopted to assess whether pollution of waters may have occurred.

Table 12 Groundwater Reporting Requirements

Receptor	Adopted Assessment Criteria
Change to baseline / background conditions	No statistically significant increasing trend or 20% increase over baseline / background concentrations or field parameters.
	Relevant criteria in NEPC (2013) for the commercial/industrial land use setting should be adopted as a screening levels. This includes:
Human Health	 Direct contact criteria have also been considered due to the relatively shallow depth to groundwater in some locations. The presence of concrete and asphalt hardstand however indicates that groundwater will be predominantly inaccessible to humans. Drinking water guidelines will not be considered, given the site geology, land use and provision of a reticulated drinking water supply.
	 Health Screening Level (HSL) for commercial/industrial land use (HSL-D) for vapour intrusion, sand aquifer, 2-<4 m based on the presence of fill and clay in the subsurface the most conservative soil type of sand has been selected.
	No gross aesthetic impacts such as non-aqueous phase liquids.
Ecological	Groundwater may migrate and discharge into Prospect Creek, which is the nearest surface water body down gradient of the site, though the ultimate receiving environment is the George's River and Botany Bay (marine). Northrop Pty Ltd (2017) indicate the local receiving waterways are heavily disturbed. The relevant ecological guidelines for toxicants, are therefore, the <u>fresh water</u> default guidelines values for heavily disturbed environments from ANZG (2018).
ns and the Table 1 12	 ANZG (2018) notes that exceedance of a DGV does not necessarily imply that there is an inherent risk, rather that further assessment and monitoring may be required prior to implementing appropriate management actions. These values should be used as 'triggers' for further assessment.

These may be applied for screening purposes for groundwater that has the potential to migrate from the site.

The analytical results for the groundwater samples are presented in Table 4, with exceedances of the adopted site assessment criteria displayed on Figure 3 (Senversa, 2024). Table 13 below outlines the minimum, maximum and mean concentration of key CoPCs in each groundwater monitoring well during the four biannual sampling events, thus establishing the baseline groundwater conditions as required by the Surface Water Management Plan.

Table 13 Groundwater Statistical Analysis of Analytical Data

		Arsenic	Chromium	Copper	Manganese	Nickel	Zinc	Ammonia (as N)	Nitrate (as N)	BTEX	TRH (C6-C10)	TRH (>C10-C40)	PAH / Phenol
Criteria	tos.	0.042	0.0033	0.0018	2.5	0.013	9.015	1.43	3.8	0.11*	0.44°	0.645	4
(mg/t)	Health	0.1	0.5	20	5	0.2	60	*	110	0.01*	0.9h	9.9°	4
Well ID	Statistic												
MW1	Min	0.007	-0.001	+0.001	0.59	0.015	0.012	0.19	-0.01	-0.001	-0.112	-0.1	=LOR
	Max	0.012	-0.001	0.015	4.84	0.156	0.174	0.71	0.02	40.001	-0.02	0.52	-LOR
	Mean	0.010	+0.001	0.005	2.15	0.058	0.062	0.47	0.01	+0.001	-0.02	0.2	+LOR:
MW2	Min	0.004	-0.001	+0.001	0.96	0.005	<0.005	0.26	<0.01	-0.001	+0.02	10.1	+LOR
	Max	0.008	+0.001	0.011	3.28	0.006	0.009	0.52	0.03	+0.001	+0.02	+0.1	+(.0H
	Mean	0.006	+0.001	0.003	1.75	0.006	0.007	0.44	0.02	<0.001	+0.02	+0.1	4.08
MW3	Min	0.002	+0.001	<0.010	6.15	0.191	0.122	0.22	=0.01	+0.001	10.02	19.1	=0.0E
	Max	0.011	0.005	0.006	7.4	9.207	0.253	0.29	0.10	-0.001	+0.02	0.91	40R
	Mean	0.005	0.004	0.003	6.8	0.199	0.214	0.27	0.03	<0.001	-0.02	0.31	-1.0R
MW4	Min	0.005	<0.1101	40.001	4.00	0.011	<0.005	0.28	<0.01	<0.901	<0.02	-0.1	4L06
	Max	0.00H	-0.001	0.005	5.04	0.021	0.006	0.34	0.01	0.002	<0.02	-0.1	*L0R
	Mean	0.007	40.001	0.002	5.12	0.017	0.002	0.31	<0.01	+0.001	-0.02	+0.1	+LOR
MW6	Min	-0.001	-0.001	<0.004	-0.01	0.001	=0.005	=0.01	0.18	+0.001	-0.02	10.1	-L08
	Max	0.002	+0.001	0.003	0.225	0.002	0.006	0.09	1.93	+0.001	<0.02	-0.1	-4.0R
	Mean	0.002	+0.001	0.001	0.81	0.601	0.002	0.03	1.19	< 0.001	y0.02	+0.1	408

Most conservative assessment criteria for BTEX displayed. Table 4 presents the applicable criteria for each BTEX compound.

Although the WMP outlined that annual groundwater monitoring be conducted for three years post completion of baseline monitoring, Senversa (2024) recommends that this is no longer required.

Baseline groundwater monitoring commenced at the same time as commencement of operations at the site and no detrimental statistical trends, considered to be associated with site operations, have been noted in groundwater quality during this time. It is considered unlikely that additional changes in groundwater quality would be noted after a further one year of groundwater monitoring given the sealed nature of the operational portion of the site, the low hydraulic conductivity of the underlying aquifer and adherence to the Applicant's Management and Mitigation Measures that form Appendix B of the Development Consent. Further triggers, in accordance with Table 5.2 of the WMP, for additional groundwater monitoring should include if additional processes commence at the site (e.g. food and garden organics [FGO], food and liquid depackaging [FLD], or other trackable liquid waste), if a potentially contaminating substance is to be stored or used/processed on the site, or a major incident occurs at the site (e.g. spill or leak of liquid substance/leachate, fire, etc). A review of the requirement for groundwater monitoring should be conducted every three years and when additional processes commence at the site.

4.5 Noise

In accordance with EPL 21092, noise from the premises must not exceed the limits noted in Table 13. In accordance with Development Consent SSD-7401 all construction activities related to the development must also comply with the limits in Table 13.

Assessment criteria for TRH OS-C10 fraction minus BTEX (F1) displayed

Adopted assessment criteria for TRH >C34-C40 displayed. Table 4 presents the applicable criteria for each TRH fraction.

^{*} Table 4 presents the adopted assessment criteria for each PAHIghenol compound, where available

Table 14 Noise Limits dB(A)

Location	Day	Evening	Night	Night	
	LAeq(15 minute)	LAeq(15 minute)	LAeq(15 minute)	LAeq(1 minute)	
All sensitive receivers	35	35	35	45	

Day - The period from 7:00am to 6:00pm Note:

Evening – The period from 6:00pm to 10:00pm Night - The period from 10:00pm to 7:00am

LAeq means the equivalent continuous noise level - the level of noise equivalent the energy-average

of noise levels occurring over a measurement period.

4.5.1 Operational Noise

EPL 21092 stipulates that noise monitoring is to be carried out upon the request of an authorised NSW EPA officer. If requested, noise monitoring must be undertaken in accordance with Australian Standard AS 1055: 2018 Acoustics - Description and measurement of environmental noise, and the compliance monitoring guidance provided in the NSW Noise Policy for Industry (EPA 2017).

During the 2023/24 reporting period, reDirect was not requested to complete any noise monitoring.

Traffic 4.6

In accordance with the reDirect Operational Traffic Management Plan (OTMP), observations of compliance are to be undertaken at three monthly intervals, to document any remedial actions required with employees, heavy vehicle drivers or haulage companies.

reDirect carry out daily observations of traffic management and compliance against mitigation measures included within the OTMP. Observations are recorded on the Operational Environmental Management Plan – Wetherill Park Inspection Checklist. No breaches of traffic management procedures were recorded during the reporting period. Refer to Appendix C -Example Quarterly OEMP Checklist for example records.

Community Relations 5

5.1 **Environmental Complaints**

No community complaints were received during the 2023/24 reporting period.

5.2 **Community Liaison**

5.2.1 Information Exchange

In accordance with EPL 21092 condition M3.1 and M3.2, reDirect operate a telephone complaints line for the purpose of receiving any complaints from the members of the public in relation to activities conducted at the premises or by any vehicle or mobile plant. The complaints line is published on the reDirect recycling website, so the public know how to contact reDirect should a scenario trigger a complaint.

6 Independent Audit

Development Consent SSD 7401 condition C13 sets out requirements for independent environmental audits of the Development. reDirect commissioned environmental consultants RPS AAP Consulting Pty Ltd (RPS) to conduct an Independent Environmental Audit (IEA) of the site for operations audit period 23 August 2022 to 14 September 2023 (site inspection date) and construction period preceding operation of the site.

RPS noted good environmental management practices occurring at Redirect Recycling Wetherill Park. reDirect's compliance management consists of daily site inspection checklists, inspection of incoming loads and staff training. Overall, reDirect's general environmental management was commended. Appropriate shed layout, bunding and storage of materials, regular cleaning of the shed floor and other environmental management processes contribute to effective minimisation of the development's environmental impacts. The IEA concluded that the Development was undertaken generally in accordance with SSD 7016, the EIS and RTS, development layout plans and drawings, management and mitigation measures, and documents and drawings of the Existing Development.

There were 2 non-compliances (items) with 2 associated corrective actions raised. Corrective actions associated with Condition A27 have been completed by reDirect and required the provision of existing dilapidation to DPHI. Corrective actions associated with Condition B14 will not be triggered until further construction is planned and/or determined, due to the nature of specific detail required to be incorporated into the Construction and Demolition Waste Management Plan.

The IEA Report was submitted to DPIE on 17 October 2023.

In accordance with SSD 7401 condition C13 the next IEA is scheduled for August 2026.

7 Environmental Incidents & Non-compliances

Environmental incidents are managed through reDirect's Pollution Incident Response Management Plan (PIRMP) and are logged in DataStation, reDirect's incident management system. Each incident report details the issue, the corrective and preventative actions taken, and the responsibilities and timing for completion of the actions. The report also includes any additional comments relevant to the incident and the completion date of corrective actions.

7.1 Incidents

A pollution incident that requires notification is defined in section 147 of the Protection of the Environment Operations Act 1997 as:

- (a) Harm to the environment is material if:
 - i. It involves actual of potential harm to the health or safety of human beings or the ecosystems that is not trivial, or
 - ii. If results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (or such other amount as is prescribed by the regulations),
- (b) Loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment.

During this reporting period, there were no reportable environmental pollution incidents at the reDirect facility.

7.2 Non-conformances

reDirect Recycling have not been issued with any non-conformance or breach of licence correspondence from NSW DPHI or NSW EPA, respectively. Additionally, reDirect have not determined any non-compliances regarding operation of the site during the reporting period.

8 Activities Proposed for the next Annual Review Period

reDirect will endeavour to carry out the activities listed in Table 14 during the 2024/25 reporting period to assist with improving the environmental performance of the existing development and the project.

Table 15 Proposed activities for 2023/2024 reporting period

Ongoing implementation of Environmental Management Plans for the existing development and the project.

Complete installation of new hydro tip controls on top tier of the site.

Continue erosion and sediment control inspections and rectification works as necessary to manage stormwater discharge.

Update current operational management plans to reflect recommendations from findings of the annual review and any relevant monitoring results.

APPENDICIES

Appendix A – Annual Surface Water and Baseline Groundwater Condition Report

ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW

24 September 2024

Annual Surface Water and Baseline Groundwater Condition Report – 2024

Document Information

Annual Surface Water and Baseline Groundwater Condition Report – 2024, 24 Davis Road, Wetherill Park, NSW

Prepared by:

Senversa Pty Ltd

ABN: 89 132 231 380

Level 24, 1 Market St, Sydney, NSW 2000

tel:+61 2 8252 0000 www.senversa.com.au

Prepared for:

ReDirect Recycling

2 Wella Way Somersby, NSW

Revision	Date	Author	Reviewed	Approved	Detail
0	18 September 2024	Bec Chapple	Emma Walsh	Andrei Woinarski	Rev0
1	24 September 2024	Bec Chapple	Emma Walsh	Andrei Woinarski	Rev1

Project Manager: Bec Chapple
Project Director: Emma Walsh

Disclaimer and Limitations:

This document is confidential and has been prepared by Senversa for use only by its client and for the specific purpose described in our proposal which is subject to limitations. No party other than Senversa's client may rely on this document without the prior written consent of Senversa, and no responsibility is accepted for any damages suffered by any third party arising from decisions or actions based on this document. Matters of possible interest to third parties may not have been specifically addressed for the purposes of preparing this document and the use of professional judgement for the purposes of Senversa's work means that matters may have existed that would have been assessed differently on behalf of third parties.

Senversa prepared this document in a manner consistent with the level of care and skill ordinarily exercised by members of Senversa's profession practising in the same locality under similar circumstances at the time the services were performed.

Permission should be sought before any reference (written or otherwise) is made public that identifies any people, person, address or location named within or involved in the preparation of this report. Senversa requires that this document be considered only in its entirety and reserves the right to amend this report if further information becomes available. This document is issued subject to the technical principles, limitations and assumptions provided herein in **Section 5.0**.

©2024 Senversa Pty Ltd

Senversa acknowledges the traditional custodians of the land on which this work was created and pay our respect to Elders past and present.

Executive Summary

Senversa Pty Ltd (Senversa) was engaged by reDirect Recycling Pty Ltd (reDirect) to conduct four biannual groundwater and surface water monitoring events (WME), along with associated reporting, over a two-year period at the reDirect Resource Recovery Facility located at 24 Davis Road, Wetherill Park, New South Wales (NSW) (the site).

The Water Management Plan (WMP) for the site (Senversa, 2022. *Water Management Plan, reDirect Resource Recovery Facility* – 24 Davis Road, Wetherill Park, NSW) outlines the initial requirement for six-monthly (bi-annual) monitoring of surface water and groundwater across and under the site for a two-year period following commencement of operations (August 2022).

This report documents the surface water monitoring conducted in February and July 2024, as well as the baseline groundwater conditions established over a two-year period from February 2023 to July 2024.

Objectives

The objectives of surface water and groundwater monitoring were to:

- Comply with the requirements of the WMP.
- Verify whether surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the State Significant Development (SSD) Conditions of Approval (COA) and Fairfield City Council (FCC) (2017) Stormwater Management Policy.
- Assess surface water/stormwater quality with respect to the conditions of the site's environmental protection licence (EPL 21092).
- Assess geochemical parameters and target analytes in groundwater to form a baseline characterisation of the groundwater on site.

Scope of Work

The scope of work was in accordance with the WMP and included the following:

- Ongoing inspections by reDirect of the site areas outside of the covered and controlled processing areas (e.g. driveway, car park area, ramp) and all surface water sampling points and subsurface drains.
- Six-monthly (following a rainfall event) sampling and analysis of two surface water sampling points on-site (SW1 in the sand filter and SW2 in the Ecoceptor outflow sampling point).
- Six-monthly gauging, sampling and analysis of five on-site groundwater monitoring wells (MW1, MW2, MW3, MW4 and MW6).
- Preparation of this report.

Conclusions

Based on the available data and with respect to the objectives, the following conclusions are made:

Compliance with WMP:

Surface water monitoring was conducted consistent with requirements in the WMP during 2024.

Groundwater monitoring was generally conducted consistent with requirements in the WMP during 2023 and 2024, with no material deviations that were considered to impact the outcomes of the assessment.

Ensure surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the SSD COA and FCC (2017):

No repairs were identified to be required. The quarterly inspections reported that there were no outstanding factors that needed addressing during the monitoring period.

Through comparison of analytical results at SW1 (untreated stormwater) vs SW2 (treated stormwater), the stormwater treatment train met the stormwater pollutant reduction targets outlined in FCC (2017) for total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN).

Assess surface water/stormwater quality with respect to Condition L1.1 of EPL 21092:

During the 2024 stormwater monitoring events:

- Concentrations of all analytes tested in surface water were reported below the adopted healthbased assessment criteria.
- Concentrations of copper, zinc and nutrients were reported above the conservative ecological screening criteria at the Ecoceptor discharge point (SW2), indicative of the quality of stormwater being discharged from site. However, given the low concentrations reported (within the range of expected concentrations provided in literature of discharge from industrial sites), the intermittent nature of stormwater flows (rainfall dependent), mixing with downstream stormwater discharges and the distance to the nearest ecological receptor (1.5 kilometres), this is not considered to pose an unacceptable risk to the receptor or constitute a pollution event.

Assess geochemical parameters and target analytes in groundwater to form a baseline characterisation of the groundwater on site.

During the 2023 - 2024 WMEs:

- Baseline groundwater conditions were established, which can be used for assessing potential impacts to groundwater from operations at the site in the future.
- The laboratory reported either low concentrations, or concentrations below the laboratory limit of reporting, for benzene, toluene, ethylbenzene and xylene (BTEX), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH) and phenols, which are the primary contaminants associated with the historical use of the site as an asphalt batching plant.
- Concentrations of analytes tested in groundwater were below the adopted health-based assessment criteria, with the exception of manganese and nickel, which are considered indicative of regional groundwater conditions.
- Concentrations of chromium, copper, manganese, nickel and zinc were reported above the
 conservative ecological screening criteria. Metal concentrations were generally highest at MW3,
 which may be indicative of the quality of groundwater migrating onto the site from the
 neighbouring property to the west and/or regional groundwater conditions. The potential risk to
 ecological receptors is considered low given the distance to the nearest receptor and the low
 hydraulic conductivity of the groundwater.

No incidents were reported that may have resulted in an impact to groundwater.

Recommendations

On the basis of the results from this investigation, Senversa recommends the following:

- reDirect undertake scheduled maintenance on the site's stormwater treatment train, including the sand filter detention pit and Ecoceptor, to remove possible sediment build-up that may be causing zinc concentrations to increase through the treatment process.
- Per the WMP, the following monitoring should continue:
 - Ongoing weekly, quarterly and biannual environmental inspections and maintenance of the stormwater system by reDirect in accordance with the site's operational environmental management plan (OEMP).
 - Annual surface water sampling (per Table 4.2 of the WMP) from both SW1 and SW2 for the following analytes: pH, TSS, TP, TN and copper & zinc.
- Although the WMP outlined that annual groundwater monitoring be conducted for three years post completion of baseline monitoring, Senversa recommends that this is no longer required. Baseline groundwater monitoring commenced at the same time as commencement of operations at the site and no detrimental statistical trends, considered to be associated with site operations, have been noted in groundwater quality during this time. It is considered unlikley that additional changes in groundwater quality would be noted after a further one year of groundwater monitoring given the sealed nature of the operational portion of the site, the low hydraulic conductivity of the underlying aquifer and adherence to the Applicant's Management and Mitigation Measures that form Appendix B of the Development Consent. Further triggers, in accordance with Table 5.2 of the WMP, for additional groundwater monitoring should include if additional processes commence at the site (e.g. food and garden organics [FGO], food and liquid depackaging [FLD] or other trackable liquid wastes), if a potentially contaminating substance is to be stored or used/processed on the site, or a major incident occurs at the site (e.g. spill or leak of liquid substance/leachate, fire, etc). A review of the requirement for groundwater monitoring should be conducted every three years and when additional processes commence at the site.
- The potential risk to intrusive maintenance workers from elevated concentrations of manganese
 and nickel in the groundwater is considered to be low, given that exposure is unlikely due to no
 identified extraction/use and the average depth to water exceeds 2 metres below ground level
 (m bgl). However, it may be prudent to reduce potential risks during any deep intrusive works via
 minimising contact with groundwater and implementing good hygiene practices. These potential
 risks and management controls should be documented in safe work method statements (SWMS).
- Nutrient concentrations should no longer be compared against the overly conservative ANZECC & ARMCANZ (2000)¹ physical stressor trigger levels. Reductions in nutrient levels during stormwater treatment should continue to be monitored in accordance with FCC (2017).

_

¹ ANZECC & ARMCANZ (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Council of Australia and New Zealand.

Contents

Executiv	ve Summary	ii
List of A	Acronyms	vii
1.0	Introduction and Objectives	1
1.1	Background	1
1.2	Objectives	1
1.3	Scope of Work	2
1.4	Deviations from WMP	2
2.0	Monitoring Rational and Methodology	3
2.1	Monitoring Locations	3
2.2	Sampling Methodology	3
2.3	Water Quality Assessment Criteria	5
2.3.1	Surface Water Trigger Levels and Action Responses	5
2.3.2	Surface Water Quality Assessment Criteria	6
2.3.3	Groundwater Trigger Levels and Action Responses	6
2.3.4	Groundwater Assessment Criteria	7
3.0	Results	9
3.1	Site Inspections	9
3.2	Rainfall Prior to Sampling Events	9
3.3	Surface Water	9
3.3.1	Observations and Geochemical Parameters	9
3.3.2	Analytical Results	10
3.3.3	Statistical Analysis	12
3.4	Groundwater	13
3.4.1	Observations and Geochemical Parameters	13
3.4.2	Analytical Results	13
3.4.3	Groundwater Baseline Conditions and Statistical Analysis	16
3.4.4	Contaminant Concentration Trends	18
3.5	Data Quality Review	19
4.0	Conclusions and Recommendations	20
4.1	Conclusions	20
4.2	Recommendations	22
5.0	Principles and Limitations of Investigation	23
6.0	References	24

Tables in Text

Table 2-1: Inspection, Surface Water and Groundwater Monitoring Methodology	3
Table 2-2: Stormwater Quality Triggers and Action Responses	5
Table 2-3 Groundwater Management Plan Trigger Level and Action Responses	6
Table 2-4: Groundwater Assessment Criteria	7
Table 3-1: Rainfall prior to surface water monitoring events	g
Table 3-2 Surface water observations and geochemical parameters	S
Table 3-3 Surface Water Analytical Summary	11
Table 3-4: Statistics for Surface Water Samples in 2023 and 2024	12
Table 3-5: Geochemical Parameters of Groundwater	13
Table 3-6 Groundwater Analytical Summary	15
Table 3-7: Groundwater Statistical Analysis of Analytical Data	17
Table 3-8: Groundwater Concentration Trend Analysis Summary 2023 – 2024	18

Appendices

Figures

Tables

Appendix A: OEMP Inspections

Appendix B: Field Sheets

Appendix C: Calibration Certificates

Appendix D: Quality Assessment / Quality Control

Appendix F: Laboratory Reports

Appendix G: Mann Kendall Groundwater Trend Analysis

List of Acronyms

Acronym	Definition
ADWG	Australian Drinking Water Guidelines
ALS	Australian Laboratory Services
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines
ARMCANZ	Agriculture and Resource Council of Australia and New Zealand
ASC	Assessment of Site Contamination
вом	Bureau of Meteorology
ВТЕХ	Benzene, toluene, ethylbenzene, xylenes
COA	Conditions of approval
CoPC	Contaminant of potential concern
DGV	Default guideline value
DO	Dissolved oxygen
DQI	Data Quality Indicator
DQO	Data Quality Objective
EC	Electrical conductivity
EPA	Environment Protection Authority (NSW)
EPL	Environmental Protection Licence
FCC	Fairfield City Council
FGO	Food and garden organics
FLD	Food and liquid depackaging
HDPE	High-density polyethylene
HSL	Health screening level
km	Kilometre
LOR	Limit of reporting
m	Metres
m AHD	Metres Australian Height Datum
m bgl	Metres below ground level
m btoc	Metres below top of casing
mg/L	Milligrams per litre

Acronym	Definition
MW	Monitoring well
NAPL	Non-aqueous phase liquid
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NSW	New South Wales
OEMP	Operational Environmental Management Plan
PAH	Polycyclic aromatic hydrocarbons
PCR	Primary contact recreation
POEO Act	Protection of the Environment Operations Act 1997
QA	Quality assurance
QC	Quality control
RPD	Relative percentage difference
SSD	State Significant Development
SWL	Standing water level
TDS	Total dissolved solids
TSS	Total suspended solids
TKN	Total kjeldahl nitrogen
TN	Total nitrogen
TON	Total organic nitrogen
ТР	Total phosphorus
TRH	Total recoverable hydrocarbons
μg/L	Micrograms per litre
WME	Water Monitoring Event
WMP	Water Management Plan

1.0 Introduction and Objectives

Senversa Pty Ltd (Senversa) was engaged by reDirect Recycling Pty Ltd (reDirect) to conduct four biannual (six-monthly) groundwater and surface water monitoring events (WME), along with associated reporting, over a two-year period at the reDirect Resource Recovery Facility located at 24 Davis Road, Wetherill Park, New South Wales (NSW) (the site). The site location and layout are presented on **Figure 1**.

Senversa (2023)² documented the surface water monitoring conducted in February and August 2023. This report documents the surface water monitoring conducted in February and July 2024, as well as the baseline groundwater conditions established over the two-year period from February 2023 to July 2024.

1.1 Background

A Water Management Plan (WMP) has previously been prepared for the site³ and is currently being implemented in accordance with the site's operational environmental protection licence (EPL) 21092, issued by the NSW Environment Protection Authority (EPA). The facility commenced operation under EPL 21092 in August 2022.

The WMP outlines the initial requirement for six-monthly (bi-annual) monitoring of surface water and groundwater across and under the site for a two-year period following commencement of operations. The requirements for subsequent on-going monitoring will be determined based on the results from the initial two-year period.

The purpose of the two-year period of surface water monitoring was to assess the quality of stormwater collected on-site prior to treatment, as well as being discharged to the Council stormwater system, to assess whether the stormwater controls across the site are meeting their performance targets. The purpose of the groundwater monitoring was to establish baseline groundwater conditions, which may be used to assess whether there are site-related operational impacts to groundwater quality in the future.

The existing monitoring network comprises five groundwater monitoring wells and two surface water sampling locations, as defined in the WMP, and shown on **Figure 2**.

The WMP requires a factual surface water and baseline groundwater condition report after the initial two-year monitoring period, which is this report.

1.2 Objectives

The objectives of surface water and groundwater monitoring were to:

- Comply with the requirements of the WMP.
- Verify whether surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the State Significant Development (SSD) Conditions of Approval (COA) and Fairfield City Council (FCC) (2017) Stormwater Management Policy.
- Assess surface water/stormwater quality with respect to Condition L1.1 of EPL 21092.
- Assess geochemical parameters and target analytes in groundwater to form a baseline characterisation of the groundwater on site.

² Senversa (2023). Surface Water Monitoring Report – Annual 2023, ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW. 21 September 2023.

³ Senversa (2022). Water Management Plan, reDirect Resource Recovery Facility – 24 Davis Road, Wetherill Park, NSW. 5 April 2022

1.3 Scope of Work

The scope of work was in accordance with the WMP and included the following:

- Ongoing inspections (since September 2023) by reDirect of the site areas outside of the covered
 and controlled processing areas (e.g. driveway, car park area, ramp) and all surface water sampling
 points and subsurface drains.
- Six-monthly (following a rainfall event) sampling and analysis of two surface water sampling points on-site (SW1 in the sand filter and SW2 in the Ecoceptor outflow sampling point) (since February 2024).
- Six-monthly gauging, sampling and analysis of five on-site groundwater monitoring wells (MW1, MW2, MW3, MW4 and MW6) (since February 2023).
- Preparation of this report.

1.4 Deviations from WMP

There were no material deviations from the surface water management plan requirements in the WMP.

The deviations from the groundwater management plan requirements in the WMP include the following:

- Groundwater monitoring well MW5 was lost prior to the February 2023 WME (the first of the four biannual WMEs). Gravel fill had been imported into the area as part of construction works post installation of the monitoring well, was compacted and covered MW5. ReDirect and Senversa tried several times to locate the monitoring well, including using a metal detector, but efforts were unsuccessful. Senversa concluded that this monitoring well was not critical to establishment of baseline groundwater conditions, as it was located in the centre of the site. Should future groundwater monitoring indicate that concentrations of contaminants of potential concern (CoPC) migrating off-site (to the south) have increased, then reDirect should consider installing a replacement monitoring well in the vicinity of MW5 to assist in identification and delineation of potential impacts.
- Groundwater geochemical parameters were not collected from groundwater monitoring well MW6 in the July 2024 WME. There was not enough volume of the groundwater sample (collected via Hydrasleeve®) for laboratory analysis and field measurement of geochemical parameters, therefore the laboratory analysis was prioritised. This is not considered to impact on the establishment of the baseline groundwater quality and conditions at this location or across the site, since three measurements of geochemical parameters were collected at this location during the two year period and geochemical parameters were measured at the other wells in the groundwater monitoring well network during the July 2024 WME.

2.0 Monitoring Rational and Methodology

2.1 Monitoring Locations

Monitoring locations included the following, as shown on Figure 2:

- General site areas outside of covered and controlled processing areas (e.g. driveway, car park area, ramp) (inspection only by reDirect).
- Two surface water locations:
 - SW1 Sand filter bed inflow sampling point (to assess quality of surface water across the site prior to treatment).
 - SW2 Ecoceptor outflow sampling point (to assess quality of surface water across the site following treatment and prior to discharge from site).
- Five groundwater monitoring wells:
 - MW1 Hydraulically down-gradient of the stormwater treatment sand filter box, representative
 of groundwater likely migrating off-site to the south.
 - MW2 Hydraulically down-gradient of the Ecoceptor, also representative of groundwater likely migrating off-site to the south.
 - MW3 Western site boundary, hydraulically down-gradient of neighbouring property.
 - MW4 Hydraulically down-gradient of the drill mud processing facility on eastern boundary.
 - MW6 Hydraulically up-gradient monitoring well that captures the quality of background groundwater migrating onto the site from the north.

2.2 Sampling Methodology

The inspection, surface water and groundwater assessment methodology are summarised below.

Table 2-1: Inspection, Surface Water and Groundwater Monitoring Methodology

Activity Details Each week, reDirect was responsible for conducting a site inspection in which they observed the Inspections (since Senversa, 2023) general site areas outside of covered and controlled processing areas (e.g. driveway, car park area, ramp). These records are presented in Appendix A A quarterly inspection of all surface water sampling points and subsurface drain pits was conducted in March 2024 and June 2024. This included the following methodologies: Removal of the grate and inspection of the internal walls and base. Removal of any collected sediment, debris, litter and vegetation Inspection and ensuring the grate was clear following any removal of objects. Ensuring there was a flush placement of the grate upon refitment. Drainage structures were inspected noting any dilapidation, with repairs been carried out if necessary. Rainwater tanks were checked for evidence of litter and pests and the structural integrity of the tank was assessed. The sediment chamber for the Ecoceptor was checked and cleaned, with any damages These records are also presented in Appendix A.

Activity

Details

Surface Water Sampling (since Senversa, 2023)

Surface water sampling commenced after a period of rainfall, to ensure there was enough water to sample from the sampling locations. Rainfall data was monitored prior to each surface water sampling event. The rainfall data was collected from the Australian Bureau of Meteorology (BOM), measured from Prospect Reservoir (station 067019) 1 kilometre (km) north of the site.

- Surface water sampling was completed on the following dates:
- 7 February 2024.
- 9 July 2024.

Laboratory prepared and supplied bottles/vials were filled directly from the sampling location using an extendable sampling pole. A sub-sample was filtered using a $0.45 \, \mu m$ filter in the field prior to placing into sample container for dissolved metals analysis. Vials and bottles were filled to minimise headspace and placed into an insulated cooler containing bagged ice.

A separate aliquot of water was collected for field measurement of general water quality parameters⁴.

A new pair of nitrile gloves were worn for each sample collection event.

Sampling field records are presented in Error! Reference source not found.. Calibration certificates for the equipment used during the field program are presented in **Appendix C**.

Monitoring Well Gauging

The groundwater standing water level (SWL) was measured in the monitoring wells (MW1, MW2, MW3, MW4 and MW6) using a calibrated electronic water/oil interface probe.

Groundwater gauging records are presented in **Table 1**, with field notes included in **Appendix B** and calibration certificates presented in **Appendix C**.

Groundwater Sampling

Groundwater samples were collected from monitoring wells utilising no-purge high-density polyethylene (HDPE) HydraSleeves \circledR .

The HydraSleeves® were placed a minimum of 1 metre (m) below the measured SWL and left *insitu* for a minimum of 24-hrs prior to sample collection. During sampling, collected groundwater was transferred from the HydraSleeve® directly into laboratory supplied sample containers. Geochemical parameters were measured *ex-situ* in the field using a calibrated water quality meter.

The geochemical water quality data are presented in **Table 2**, with field notes included in **Appendix B** and calibration certificates in **Appendix C**.

Sample Analytical Schedule

Samples were analysed at laboratories by methods endorsed by the National Association of Testing Authorities (NATA), including:

- ALS Environmental (ALS): analysis of primary surface water samples.
- Envirolab: Analysis of February 2023 inter-laboratory duplicate sample.
- Eurofins: Analysis of August 2023, February 2024 and August 2024 interlaboratory duplicate sample.

Surface Water

Surface water samples were analysed for constituents required by the WMP: total dissolved solids (TDS), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), dissolved metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, iron and manganese), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH) and phenols.

Groundwater

Groundwater samples were analysed for constituents required by the WMP: Ammonia (as N), nitrate, TN, TP, dissolved metals (same as for surface water), TRH, BTEX⁵ and PAH.

⁴ General water quality parameters including: pH, electrical conductivity (EC), dissolved oxygen (DO) and redox potential.

⁵ Benzene, toluene, ethylbenzene and xylenes.

Activity

Details

Quality assurance and quality control

Data quality assurance (QA) and quality control (QC) procedures consistent with the guidance in the WMP were implemented (refer **Appendix D**) including:

- Field QA procedures: Inspections were conducted by suitably experienced persons familiar
 with the site operations; water sampling was conducted by suitable trained and experienced
 persons; dedicated sampling equipment was used; field and equipment calibration records
 were retained.
- Field QC samples: The following QC samples were analysed:
 - One intra-laboratory duplicate sample per WME.
 - One inter-laboratory duplicate sample per WME.
 - One rinsate sample per WME.
 - One trip-blank was analysed in the February 2023 and August 2023 WMEs and two were analysed in each of the February 2024 and July 2024 WMEs.
 - One trip-spike was analysed in February 2023 and August 2023 WMEs and two were analysed in each of the February 2024 and July 2024 WMEs.
- Laboratory QA/QC procedures and controls were implemented refer **Appendix D**.

The data validation process involved checking both the analytical procedure compliance, as well as the accuracy and precision of the sampling methods used throughout the sampling program (refer **Appendix D**).

2.3 Water Quality Assessment Criteria

Condition L1 of the EPL states that the licensee must comply with section 120 of the *Protection of the Environment Operations Act 1997* (POEO Act), which prohibits the pollution of waters. The below subsections outline the adopted assessment criteria for surface water and groundwater to assess whether pollution of waters may have occurred.

2.3.1 Surface Water Trigger Levels and Action Responses

Stormwater trigger levels and action responses are provided in Section 4.3.5 of the WMP. Most of the monitoring tasks and maintenance actions relate to the stormwater network and devices, however the monitoring item related to stormwater quality, which informs the objectives of the stormwater monitoring program, is reproduced in **Table 2-2** below.

Table 2-2: Stormwater Quality Triggers and Action Responses

Aspect	Trigger	Purpose of Monitoring	Action
Exceedance of water quality objectives	Condition L1 of the EPL states that the licensee must comply with section 120 of the POEO Act, which prohibits the pollution of waters. Stormwater quality should also meet FCC stormwater quality, discharge requirements or approval conditions. In the absence of any EPL or FCC criteria, site-specific risk-based screening criteria should be adopted from NSW EPA made or approved guidance appropriate for the commercial/industrial land use and heavily disturbed receiving environment. These include: ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality for heavily disturbed environments; and, primary contact recreation (PCR) guidelines adopted from National Health and Medical Research Council (NHMRC) (2011), Australian Drinking Water Guidelines and NHMRC (2008) Guidelines for Managing Risks in Recreational Water.	Verify soil and erosion, and stormwater, management controls in SSD-7401 are performing as designed.	Review the above triggers and actions.

2.3.2 Surface Water Quality Assessment Criteria

In the absence of any EPL or FCC criteria, the WMP adopted site-specific risk-based screening criteria from NSW EPA made or approved guidance appropriate for the commercial/industrial land use and heavily disturbed receiving environment. These include (refer **Table 3** for criteria values):

- Health risk screening: Direct contact exposure based on PCR guidelines adopted from the
 Australian Drinking Water Guidelines (ADWG, 2022)⁶ and NHMRC (2008) Guidelines for Managing
 Risks in Recreational Water for recreational exposure. This is also conservative for incidental
 exposure to workers.
- Ecological risk screening: ANZG⁷ (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality for heavily disturbed environments. Surface water that discharges the site may migrate and discharge into Prospect Creek (approximately 1.5 km to the east of the site), which is the nearest surface water body downstream of the site, though the ultimate receiving environment is the George's River and Botany Bay (marine). The WMP indicates previous studies found that the local receiving waterways are heavily disturbed. The relevant ecological guidelines for toxicants, are therefore, the freshwater default guidelines values (DGVs) for heavily disturbed environments from ANZG (2018).
 - Given that ANZG (2018) does not specify DGVs for nutrients, the physical stressor trigger values from ANZECC & ARMCANZ (2000) have conservatively been adopted, however these do not take into consideration the surrounding land use. Given the setting in an urban environment, consideration is given to concentrations in stormwater runoff in urban or commercial/ industrial areas in east coast Australia reported by Drapper et al (2022) and Fletcher et al (2004), which are more applicable to the site setting.
- Aesthetic impacts: e.g. no gross aesthetic impacts such as non-aqueous phase liquids (NAPL).

2.3.3 Groundwater Trigger Levels and Action Responses

Trigger levels and action responses applied to the groundwater monitoring program are provided in Section 5.5 of the WMP and repeated in **Table 2-3** below.

Table 2-3 Groundwater Management Plan Trigger Level and Action Responses

Aspect	Trigger	Actions
Groundwater	Concentrations of key indicator analytes outlined in the WMP exceed performance	Consider re-sampling or increased sampling frequency to confirm results.
	criteria and do not show a stable or decreasing trend.	Assess possible sources of contamination – i.e. change in site operations, change in neighbouring site operations or chemical spills.
		Assess the significance of associated environmental risk – where a potentially unacceptable risk is identified, a suitably qualified and experienced professional should assess whether the monitoring program is adequate to assess potential contamination risks, and recommend program changes (if necessary) (e.g., additional sampling locations, more frequent monitoring or different CoPC).
		Implement the amended monitoring program.
		Develop and implement management/remedial actions if necessary.

_

⁶ NHMRC (2011). Australian Drinking Water Guidelines, updated January 2022. National Health and Medical Research Council.

⁷ Australian and New Zealand Governments and Australian state and territory governments.

7

Aspect	Trigger	Actions			
	Concentrations of key indicator analytes in the WMP that are less than the performance criteria and show statistically significant stable or decreasing trend over a minimum of three events.	Assessment to determine the residual environmental risk and review the monitoring program by a suitable qualified and experienced professional. If monitoring results are consistently decreasing to levels below the performance guidelines outlined in section 5.4 of the WMP and the residual environmental risk from ongoing primary sources is considered low by a suitably qualified and experienced professional, the groundwater monitoring program may end.			
	Damaged or lost wells	Assess whether ongoing monitoring at the location is necessary. If required, repair or re-install the well.			
Site Activities	Incident (e.g. spill or release of a material or liquid) that could result in impact to surface or groundwater.	Assess whether monitoring program is adequate to assess potential impact associated with the incident. This assessment should be undertaken by a suitable qualified and experienced professional and desumented in a report with aleast conclusions.			
Site Activities	Change in nature or management of imported materials that has the potential to result in a significantly increased risk of impact from leachate. Including commencement of Stage 2 operations.	 professional and documented in a report with clear conclusions and recommendations for amendments (if necessary). Implement program changes – these may include increased monitoring frequency, inclusion of additional monitoring locations installation and monitoring of additional wells, broader analytical suite to assess the chemicals of concern. 			

2.3.4 Groundwater Assessment Criteria

Assessment of groundwater quality in the future will principally be via comparison against baseline and site background conditions, which have been established in this report. **Table 2-4** below summarises the groundwater quality criteria (or performance criteria) that are adopted in the WMP.

Table 2-4: Groundwater Assessment Criteria

Receptor	Adopted Assessment Criteria
Change to baseline / background conditions	No statistically significant increasing trend or 20% increase over baseline / background concentrations or field parameters.
Human Health	Relevant criteria for the commercial/industrial land use setting have been adopted as a screening levels. This includes:
	 Direct contact criteria (same as for surface water, based on guidelines adopted from ADWG (2022) and NHMRC (2008)) have been considered due to the relatively shallow depth to groundwater in some locations, which may be encountered during intrusive (sub-surface) construction/maintenance works. The presence of concrete and asphalt hardstand however indicates that groundwater will be predominantly inaccessible to humans.
	 Health Screening Level for commercial/industrial land use (HSL-D) in the ASC NEPM⁸ for assessment of vapour intrusion risks. Concentrations above the HSLs may pose a risk to users of enclosed buildings.
	No gross aesthetic impacts such as NAPL.
	 Drinking water guidelines will not be considered, given the site geology, land use and provision of a reticulated drinking water supply.
Ecological	Relevant criteria include:
	 ANZG (2018) freshwater DGVs for heavily disturbed environments, on the basis that groundwater may migrate and discharge into Prospect Creek.

S20102_006_RPT_rev1 | Annual Surface Water and Baseline Groundwater Condition Report – 2024

⁸ NEPC (2013). *National Environment Protection (Assessment of Site Contamination) Amendment Measure (No.1)*. National Environment Protection Council.

ANZG (2018) notes that exceedance of a DGV does not necessarily imply that there is an inherent risk, rather that further assessment and monitoring may be required prior to implementing appropriate management actions. These adopted assessment criteria should be used for screening purposes to trigger further assessment, rather than to directly assess the level of risk to any identified receptors.

3.0 Results

3.1 Site Inspections

The following key observations were made by reDirect during quarterly inspections of the surface water sampling points and subsurface drain pits in March 2024 and June 2024:

- The grates were cleaned when observations indicated that sediment was present and debris was removed when necessary.
- The sediment chamber of the Ecoceptor was checked during each quarterly observation, with no further action required on each occasion.
- No repairs were required for the surface water and stormwater drain structures.
- The rainwater tank was clear of pests and debris on each occasion, with no repairs required.

3.2 Rainfall Prior to Sampling Events

The surface water sampling events were targeted to follow a rainfall event to maximise the potential for a sufficient volume of water (for sampling and analysis) to have been treated and discharged from the Ecoceptor. The following rainfall data was collected from the BOM Prospect Reservoir (station 067019). **Table 3-1** outlines the rainfall that occurred in the 3-day period prior to each monitoring event.

Table 3-1: Rainfall prior to surface water monitoring events

Date	24-hour Rainfall (including day of sampling)	3-Day Rainfall (including day of sampling)
7 February 2024	22 millimetres (mm)	22 mm
9 July 2024	2 mm	6 mm

3.3 Surface Water

3.3.1 Observations and Geochemical Parameters

The field-measured surface water geochemical parameters for the sampling events are presented in the table below.

Table 3-2 Surface water observations and geochemical parameters

Location	Event	Dissolved Oxygen (mg/L)	Electrical Conductivity (μs/cm)	рН	Redox (Eh) (mV)	Temperature (°C)	Observations
SW1 (untreated water)	February 2024	3.07	574	7.51	307	23.9	Colourless, no odour, no sheen, suspended sediments
	July 2024	1.06	334	7.08	243	13.6	Light grey brown, no odour, no sheen, moderately turbid

Location	Event	Dissolved Oxygen (mg/L)	Electrical Conductivity (μs/cm)	рН	Redox (Eh) (mV)	Temperature (°C)	Observations
SW2 (treated water)	February 2024	4.19	656	7.70	286	25.0	Colourless, no odour, no sheen, suspended sediments
	July 2024	6.09	370	8.48	187	13.7	Light grey, no odour, no sheen, slightly turbid

Based on the above information, the following key observations were made:

- The DO of the treated water (SW2) was higher than the untreated water (SW1), likely due to the flow and agitation of the water through the stormwater treatment process. The stormwater being released from the site at the time of sampling (based on the results from SW2) was aerobic.
- The EC measurements at both SW1 and SW2 were indicative of freshwater. This indicates that the EC of the rain falling across the site had not been significantly altered by conditions at the site by the time the rain was discharged from the site (as stormwater).
- The measured pH was indicative of neutral to moderately alkaline conditions, which is within the adopted acceptable range.
- The measured Eh of SW1 and SW2 was indicative of slightly to moderately oxidising conditions.
- The range of measured temperatures is reflective of seasonal changes.
- The sampled untreated (SW1) and treated (SW2) stormwater did not have any visual / olfactory indicators of contamination.

3.3.2 Analytical Results

The surface water analytical results and screening against adopted assessment criteria are provided in **Table 3**. The laboratory analysis reports (**Appendix E**) contain the laboratory analytical results. The surface water exceedances of site criteria are also presented on **Figure 4** (attached).

A summary of exceedances of water quality objectives is provided in the table below.

Table 3-3 Surface Water Analytical Summary

Analyte / Value	Screening Criter	ia Exceedances		Comment			
	Health-Risk	Ecological Risk	Aesthetics				
Heavy metals and metalloids	None identified	Heavy metal concentrations were reported at low levels, less than relevant screening criteria for highly disturbed environments, with the exceptions of: Copper (at SW1 and SW2 in February 2024 and July 2024). Zinc (at SW2 in July 2024).	-	Metal concentrations were generally less than or similar to relevant screening criteria for disturbed ecosystems consistent with the WMP. Reported copper concentrations were slightly elevated above ecological screening criteria at both SW1 (untreated) and SW2 (treated), indicating that the treatment train has not reduced copper concentrations in the stormwater. The reported zinc concentrations at SW2 in February 2024 and July 2024 were higher than reported in SW1. This scenario was also noted in August 2023. The cause for the increase in zinc concentrations is unclear, but may be related to the treatment train and should be reviewed. The average concentration of zinc in SW2 over the four sampling events in 2023 and 2024 (0.02 mg/L) was also above the ecological criterion.			
Nutrients	None identified	No exceedances for toxicants. Exceedances of conservative physical stressor values for total oxidised nitrogen (as N), TN and TP at SW1 and SW2 in both February 2024 and July 2024.	-	Concentrations are similar to the median values for TN (1.7 mg/L) and TP (0.31 mg/L) in stormwater runoff in urban or commercial/ industrial areas in east coast Australia reported by Drapper et al (2022) and Fletcher et al (2004). TN concentrations are generally less than DGV (90% spp) for nitrate (as N) (5.6 mg/L) The concentrations of TN and TP were lower in SW2 (treated) than in SW1 (untreated). This is further discussed below.			
Organic CoPC	None identified	Exceedance of TRH >C10-C16 fraction minus naphthalene (F2) at SW1 in February 2024.	None identified	BTEX, PAHs and phenols were not detected in water samples. TRH >C10-C16 fraction minus naphthalene (F2) exceeded the ecological criteria at SW1 in February 2024, but was reported below the laboratory limit of reporting (LOR) in SW2, indicating that the treatment train was effective in removing the petroleum contamination. The concentrations of TRH in both SW1 and SW2 were below the LOR in July 2024, potentially indicating that there may have been an unreported or undetected spill or leak of petroleum products during February 2024.			
Physico-chemical Parameters	None identified	None identified	None identified	The TSS was almost two orders of magnitude greater in July 2024 compared to February 2024 at SW1, which may be related to the rainfall preceding both events. The concentrations reported in SW2 were lower (by at least one order of magnitude), indicating that the treatment train is effective in reducing the TSS concentration under a range of turbidity conditions.			

3.3.3 Statistical Analysis

The minimum concentration, maximum concentration and mean concentrations of the main CoPCs is presented in the table below, with exceedances of the site assessment criteria outlined.

Table 3-4: Statistics for Surface Water Samples in 2023 and 2024.

Analyte		Criteria		Concentra	Concentration Reported in 2023 and 2024 Monitoring Events						
(units)	Health	Ecological	Physical Stressors		SW1			SW2			
				Min	Max	Average	Min	Max	Average		
TSS (mg/L)	-	=	-	86	7,260	1,919	8	90	52		
Copper (mg/L)	20	0.0018	-	0.003	0.006	0.004	<u>0.001</u>	0.004	0.003		
Zinc (mg/L)	60	<u>0.015</u>	-	<0.005	0.005	<0.005	<0.005	0.038	0.020		
Total Oxidised Nitrogen (as N) (mg/L)		-	0.04	0.32	0.68	0.44	0.28	0.62	0.48		
Total Nitrogen (as N) (mg/L)	-	-	0.35	0.7	22.9	7.0	1.2	4.3	2.1		
Phosphorus (as P) (mg/L)	-	-	0.025	0.06	6.68	1.80	0.03	0.63	0.24		
>C10-C16 Fraction minus naphthalene (F2) (µg/L)	900	<u>440</u>	-	<lor< th=""><th><u>630</u></th><th>232</th><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<u>630</u>	232	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>		

Based on the statistics provided in **Table 3-4**, there are indications that concentrations of key parameters (TSS, TN and TP) are lower at SW2 (downstream of treatment train) than SW1 (upstream of system), which was also noted during the 2023 sampling events. The water, sediment and erosion controls in the WMP should continue to be followed to minimise migration of sediments and fines into the stormwater system.

3.4 Groundwater

3.4.1 Observations and Geochemical Parameters

The field-measured groundwater geochemical parameters for the sampling events are discussed in the table below.

Table 3-5: Geochemical Parameters of Groundwater

Parameter	Minimum	Maximum	Average	Comment
Depth to Groundwater (metres below top of casing – m btoc)	1.9	4.7	3.0	The depth to groundwater is generally shallower under the southern portion of the site compared to under the northern portion of the site. The top of well casing elevations have not been surveyed and therefore the standing water level (SWL) in m AHD ⁹ has not been able to be calculated. It is anticipated that groundwater flows in a south-easterly direction based on previous reports and local hydrogeological features – this is shown on Figure 2 .
Dissolved Oxygen (mg/L)	0.0	6.3	2.0	The groundwater conditions have ranged from anoxic to moderately aerobic both spatially and temporally.
Electrical Conductivity (μS/cm)	1,362	34,645	19,099	The groundwater conditions ranged from fresh under the northern portion of the site (MW6) to saline under the southern portion of the site. A previous report prepared for the site ¹⁰ indicated that the high salinity of the groundwater is associated with the Bringelly Shales underlying the site.
Redox Potential	146	359	246	The groundwater conditions have ranged from mildly to moderate oxidising conditions both spatially and temporally.
рН	5.78	7.41	6.52	The pH of the groundwater was slightly acidic to neutral and within the adopted acceptable range.
Temperature	15.9	29.6	20.5	A regular seasonal pattern was observed with warmer temperatures in summer (February 2024) and cooler temperatures in winter (July 2024).

The variability noted above was also noted in Douglas Partners (2016).

3.4.2 Analytical Results

The groundwater sample analytical results and screening against adopted assessment criteria are provided in **Table 4**. The laboratory analysis reports (**Appendix E**) contain all analysis results. The groundwater exceedances of site criteria are also presented in **Figure 4** (attached).

⁹ Metres Australian Height Datum

¹⁰ Douglas Partners (2016). Report on Groundwater Assessment, Proposed Resource Recovery & Recycling Centre, 24 Davis Road, Wetherill Park. September 2016.

A piper plot has been generated (**Exhibit 3-1** below) to show the major ionic water constituents. The plot indicates that the hydrochemistry of the groundwater in MW6 is distinctly different from groundwater at the remaining monitoring wells, which are dominated by sodium chloride (which is also demonstrated through high EC). This may indicate that MW6 intersects a different aquifer to the remaining monitoring wells, which is supported by the following observations:

- The recharge of groundwater following purging (during well development) was noted to be higher in MW6 than in the other monitoring wells.
- The monitoring well screen at MW6 intersects a lens of sand above the natural clay, which was not observed in the other locations.

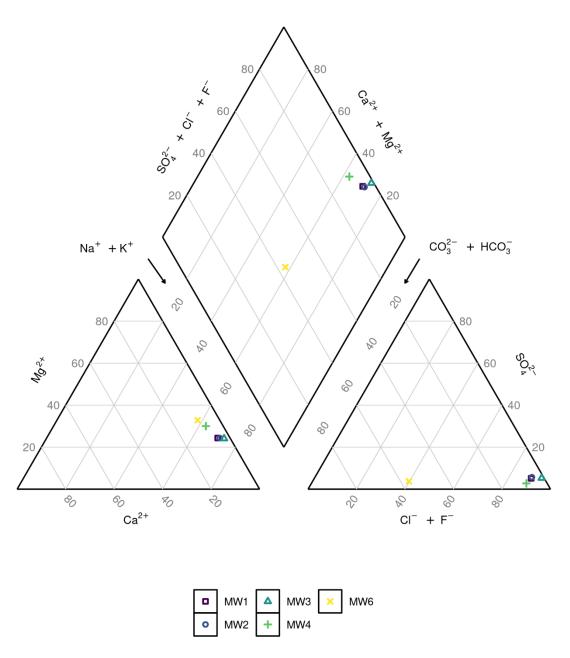


Exhibit 3-1: Piper Plot showing Hydrochemistry of Site Groundwater

A summary of exceedances of water quality objectives is provided in the table below.

Table 3-6 Groundwater Analytical Summary

Analyte / Value	Health-Risk	Ecological Risk	Comment			
Heavy metals and metalloids	Manganese concentrations exceeded the recreation health assessment criteria in MW3 and MW4. The nickel concentration at MW3 also exceeded the recreation health assessment criteria in one sampling event (August 2023).	***************************************	close to or marginally exceeded the recreation health assessment criteria. It is likely that the concentration of these metals are elevated naturally and indicative of regional groundwater conditions.			
Nutrients	None identified	No exceedances for toxicants.	-			
Organic CoPC	None identified	None identified	PAHs and phenols were not detected above the LOR in the groundwater samples. One sample (MW4 in February 2024) reported a very low concentration of toluene (below assessment criteria). All other BTEX concentrations were reported below the LOR in other locations and in other sampling events. Low concentrations of semi-volatile TRH (below assessment criteria) were reported in MW1 and MW3. The detections of toluene and TRH may be associated with the former use of the site as an asphalt batching plant.			

3.4.3 Groundwater Baseline Conditions and Statistical Analysis

The analytical results for the groundwater samples are presented in **Table 4**, with exceedances of the adopted site assessment criteria displayed on **Figure 3**. **Table 3-7** below outlines the minimum, maximum and mean concentration of key CoPCs in each groundwater monitoring well during the four biannual sampling events, thus establishing the baseline groundwater conditions. Additional statistics are presented in **Appendix F**.

Table 3-7: Groundwater Statistical Analysis of Analytical Data

		Arsenic	Chromium	Copper	Manganese	Nickel	Zinc	Ammonia (as N)	Nitrate (as N)	ВТЕХ	TRH (C6-C10)	TRH (>C10-C40)	PAH / Phenol
Criteria	Eco.	0.042	0.0033	0.0018	<u>2.5</u>	0.013	0.015	<u>1.43</u>	3.8	<u>0.11^a</u>	<u>0.44^b</u>	<u>0.64°</u>	<u>_d</u>
(mg/L)	Health	0.1	0.5	20	5	0.2	60	-	110	0.01ª	0.9 ^b	0.9°	<u>_d</u>
Well ID	Statistic												
MW1	Min	0.007	<0.001	<0.001	0.59	<u>0.015</u>	0.012	0.19	<0.01	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Max	0.012	<0.001	0.015	4.84	<u>0.156</u>	<u>0.174</u>	0.71	0.02	<0.001	<0.02	0.52	<lor< td=""></lor<>
	Mean	0.010	<0.001	0.005	2.15	0.058	0.062	0.47	0.01	<0.001	<0.02	0.2	<lor< td=""></lor<>
MW2	Min	0.004	<0.001	<0.001	0.96	0.005	<0.005	0.26	<0.01	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Max	0.008	<0.001	0.011	3.28	0.006	0.009	0.52	0.03	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Mean	0.005	<0.001	0.003	1.75	0.006	0.007	0.44	0.02	<0.001	<0.02	<0.1	<lor< td=""></lor<>
MW3	Min	0.002	<0.001	<0.010	<u>6.15</u>	<u>0.191</u>	0.122	0.22	<0.01	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Max	0.011	0.005	0.006	7.4	0.207	0.253	0.29	0.10	<0.001	<0.02	0.91	<lor< td=""></lor<>
	Mean	0.005	0.004	0.003	<u>6.8</u>	0.199	0.214	0.27	0.03	<0.001	<0.02	0.31	<lor< td=""></lor<>
MW4	Min	0.005	<0.001	<0.001	4.00	0.011	<0.005	0.28	<0.01	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Max	0.008	<0.001	0.005	6.04	0.021	0.006	0.34	0.01	0.002	<0.02	<0.1	<lor< td=""></lor<>
	Mean	0.007	<0.001	0.002	<u>5.13</u>	0.017	0.002	0.31	<0.01	<0.001	<0.02	<0.1	<lor< td=""></lor<>
MW6	Min	<0.001	<0.001	<0.001	<0.01	<0.001	<0.005	<0.01	0.18	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Max	0.002	<0.001	0.003	0.225	0.002	0.006	0.09	1.93	<0.001	<0.02	<0.1	<lor< td=""></lor<>
	Mean	0.002	<0.001	0.001	0.81	0.001	0.002	0.03	1.19	< 0.001	<0.02	<0.1	<lor< td=""></lor<>

^a Most conservative assessment criteria for BTEX displayed. Table 4 presents the applicable criteria for each BTEX compound.

^b Assessment criteria for TRH C6-C10 fraction minus BTEX (F1) displayed.

^c Adopted assessment criteria for TRH >C34-C40 displayed. Table 4 presents the applicable criteria for each TRH fraction.

^d Table 4 presents the adopted assessment criteria for each PAH/phenol compound, where available.


3.4.4 Contaminant Concentration Trends

Statistical evaluation of concentration trends and plots for key indicator analytes for available data from the baseline investigation (February 2023 to August 2024) are presented in **Appendix F** and summarised in **Table 3-8** below.

Table 3-8: Groundwater Concentration Trend Analysis Summary 2023 – 2024

Chemical Name / Well ID	Arsenic	Chromium	Copper	Manganese	Nickel	Zinc	Ammonia (as N)	Nitrate (as N)	втех	TRH (C6-C10)	TRH >C10-C40	Sum of PAH
MW1	\leftrightarrow	\leftrightarrow	-	\leftrightarrow	-	-	↓	-	\leftrightarrow	\leftrightarrow	-	\leftrightarrow
MW2	\leftrightarrow	\leftrightarrow	-	↑	\leftrightarrow							
MW3	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	-	\leftrightarrow
MW4	\leftrightarrow	\leftrightarrow	-	\leftrightarrow	↓	\leftrightarrow	\		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
MW6	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow

Symbol

Note: If all results were <LOR, the Mann-Kendall trend was listed as "Stable"

3.5 Data Quality Review

A review of the sampling and laboratory QA/QC data completed by Senversa is presented in **Appendix D**. The QA/QC review indicated that results are generally within the relevant data quality indicator acceptance criteria for the analyses conducted and that any identified non-conformances are unlikely to affect the suitability of the data set for the purposes of this investigation. The quality of the analytical data is considered reliable for the purpose of this investigation.

4.0 Conclusions and Recommendations

4.1 Conclusions

Based on the available data and with respect to the objectives, the following conclusions are made:

Compliance with WMP:

Surface water monitoring was conducted consistent with requirements in the WMP during 2024.

Groundwater monitoring was conducted consistent with requirements in the WMP during 2023 and 2024, with the following exceptions:

- Groundwater monitoring well MW5 could not be found prior to the February 2023 WME, nor
 afterwards despite several attempts to locate the well. This monitoring well was therefore not
 sampled in any of the four biannual sampling events.
- Groundwater geochemical parameters were not collected from groundwater monitoring well MW6 in the July 2024 WME due to an insufficient volume of groundwater sample obtained.

Ensure surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the SSD COA and FCC (2017) Stormwater Management Policy:

No repairs were identified to be required. The quarterly inspections reported that there were no outstanding factors that needed addressing during the monitoring period.

Although TRH was reported in surface water sample SW1 in February 2024, reDirect had not reported any spills that had been left unattended during that period. The treatment train appeared to be effective in removing the TRH contamination, as the laboratory did not report any TRH above the LOR in the stormwater sample collected from the outflow of the Ecoceptor (SW2), which is indicative of the quality of stormwater being discharged from the site.

Through comparison of analytical results at SW1 (untreated stormwater) vs SW2 (treated stormwater), the stormwater treatment train was effective at reducing the following contaminants / pollutants, thus meeting the stormwater pollutant reduction targets outlined in FCC (2017):

- TSS concentrations were reduced by 91 99% (FCC target of 80%).
- TP concentrations were reduced by 70 91% (FCC target of 55%).
- TN concentrations were reduced by 43 81% (FCC target of 40%).

Assess surface water/stormwater quality with respect to Condition L1.1 of EPL 21092:

During the 2024 stormwater monitoring events:

- Concentrations of all analytes tested in surface water were reported below the adopted healthbased assessment criteria.
- Concentrations of copper, zinc and nutrients were reported above the conservative ecological
 screening criteria at the Ecoceptor discharge point (SW2), indicative of the quality of stormwater
 being discharged from site. Given the intermittent nature of stormwater flows (rainfall dependent),
 mixing with downstream stormwater discharges and distance to the nearest ecological receptor
 (1.5 km), this is not considered to pose an unacceptable risk to the receptor or constitute a
 pollution event. In addition, the following is noted in regards to the concentrations reported:
 - Copper concentrations (0.004 mg/L) marginally exceeded the ANZG (2018) DGV (0.0018 mg/L). The concentrations are below the range provided in Fletcher et al (2004) for expected copper concentrations in stormwater from industrial land uses (0.02 0.3 mg/L during wet weather events).

- Zinc concentrations in stormwater increased following treatment (reported up to 0.023 mg/L) and were slightly above the adopted ecological assessment criteria at the end of the treatment process (0.015 mg/L). The concentrations are below the range provided in Fletcher et al (2004) for expected zinc concentrations in stormwater from industrial land uses (0.1 1 mg/L during wet weather events).
- Nutrients (total oxidised nitrogen, TN and TP) were an order of magnitude above the conservative ANZECC & ARMCANZ (2000) physical stressor trigger levels. These trigger levels are overly conservative for urban environments and are not cited in the more recent ANZG (2018) guidelines, so have been used here purely for screening purposes. The TN and TP concentrations were reduced following treatment, thus meeting the requirements of FCC (2017), and reported concentrations were also within the range provided in Fletcher et al (2004) for expected concentrations in stormwater from industrial land uses during wet weather events:
 - TN concentrations at SW2 (1.2 4.3 mg/L) were within the range of 0.7 6 mg/L in the literature.
 - TP concentrations at SW2 (0.03 0.63 mg/L) were within the range of 0.08 0.8 mg/L in the literature.

Assess geochemical parameters and target analytes in groundwater to form a baseline characterisation of the groundwater on site.

During the 2023 – 2024 monitoring events:

- Baseline groundwater conditions were established, which can be used for assessing potential impacts to groundwater from operations at the site in the future.
- The laboratory reported either low concentrations, or concentrations below the LOR, for BTEX, TRH, PAH and phenols, which are the primary contaminants associated with the historical use of the site as an asphalt batching plant.
- Concentrations of all analytes tested in groundwater were below the adopted health-based assessment criteria, with the following exceptions, which are considered indicative of regional groundwater conditions:
 - Manganese in MW3 and MW4; and
 - Nickel in MW3.
- Concentrations of chromium, copper, manganese, nickel and zinc were reported above the
 conservative ecological screening criteria. Metal concentrations were generally highest at MW3,
 which may be indicative of the quality of groundwater migrating onto the site from the
 neighbouring property to the west and/or regional groundwater quality. The potential risk to
 ecological receptors is considered low given the distance to the nearest receptor and the low
 hydraulic conductivity of the groundwater.

In relation to the groundwater trigger levels:

- The concentrations of the analytes that exceeded the assessment criteria in groundwater (chromium, copper, manganese, nickel and zinc) showed either no trend, a stable trend or a decreasing trend, with the exception of manganese at MW2 and MW3. Given that manganese concentrations are considered to be naturally elevated in this area, the increasing trend may be attributed to increased rainfall or standing water levels (SWLs) in the local area facilitating leaching of manganese from the natural soils, or another external factor not associated with site operations. No management or remedial actions are considered necessary.
- Concentrations of BTEX, TRH (C6-C10), PAHs and phenols were below the assessment criteria
 and showed a statistically significant stable trend, and therefore can be removed from the
 analytical program going forward.

- Although groundwater monitoring well MW5 was lost, Senversa concluded that this monitoring
 well was not critical to establishment of baseline groundwater conditions, as it was located in the
 centre of the site. Should future groundwater monitoring indicate that concentrations of
 contaminants of concern migrating off-site (to the south) have increased, then reDirect should
 consider installing a replacement monitoring well in the vicinity of MW5 to assist in identification
 and delineation of potential impacts.
- No incidents were reported that may have resulted in an impact to groundwater.

4.2 Recommendations

On the basis of the results from this investigation, Senversa recommends the following:

- reDirect undertake scheduled maintenance on the site's stormwater treatment train, including the sand filter detention pit and Ecoceptor, to remove possible sediment build-up that may be causing zinc concentrations to increase through the treatment process.
- Per the WMP, the following monitoring should continue:
 - Ongoing weekly, quarterly and biannual environmental inspections and maintenance of the stormwater system by reDirect in accordance with the site's operational environmental management plan (OEMP).
 - Annual surface water sampling (per Table 4.2 of the WMP) from both SW1 and SW2 for the following analytes:
 - pH.
 - TSS.
 - TP.
 - TN.
 - Copper and Zinc.
- Although the WMP outlined that annual groundwater monitoring be conducted for three years post completion of baseline monitoring, Senversa recommends that this is no longer required. Baseline groundwater monitoring commenced at the same time as commencement of operations at the site and no detrimental statistical trends, considered to be associated with site operations, have been noted in groundwater quality during this time. It is considered unlikely that additional changes in groundwater quality would be noted after a further one year of groundwater monitoring given the sealed nature of the operational portion of the site, the low hydraulic conductivity of the underlying aquifer and adherence to the Applicant's Management and Mitigation Measures that form Appendix B of the Development Consent. Further triggers, in accordance with Table 5.2 of the WMP, for additional groundwater monitoring should include if additional processes commence at the site (e.g. food and garden organics [FGO], food and liquid depackaging [FLD], or other trackable liquid waste), if a potentially contaminating substance is to be stored or used/processed on the site, or a major incident occurs at the site (e.g. spill or leak of liquid substance/leachate, fire, etc). A review of the requirement for groundwater monitoring should be conducted every three years and when additional processes commence at the site.
- The potential risk to intrusive maintenance workers from elevated concentrations of manganese
 and nickel in the groundwater is considered to be low, given that exposure is unlikely due to no
 identified extraction/use and the average depth to water exceeds 2 metres below ground level
 (m bgl). However, it may be prudent to reduce potential risks during any deep intrusive works via
 minimising contact with groundwater and implementing good hygiene practices. These potential
 risks and management controls should be documented in safe work method statements (SWMS).
- Nutrient concentrations should no longer be compared against the overly conservative ANZECC & ARMCANZ (2000) physical stressor trigger levels. Reductions in nutrient levels during stormwater treatment should continue to be monitored in accordance with FCC (2017).

5.0 Principles and Limitations of Investigation

The following principles are an integral part of site contamination assessment practices and are intended to be referred to in resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

Area	Uncertainties and Limitations
Elimination of Uncertainty	Some uncertainty is inherent in all site investigations. Furthermore, any sample, either surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.
Failure to Detect	Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environment Protection (Assessment of Site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.
Limitations of Information	The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation, including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information.
Chemical Analysis Error	Chemical testing methods have inherent uncertainties and limitations. Senversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may have occurred during the testing, so that such problems can be considered in evaluating the data.
Level of Assessment	The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort of information obtained and the time required to obtain it outweigh the benefit of the information gained and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment.
Comparison with Subsequent Inquiry	The justification and adequacy of the investigation findings in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.
Data Useability	Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.
Nature of Advice	The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business advice.

6.0 References

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Council of Australia and New Zealand.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-quidelines.

Drapper D, Olive K, McAlister T, Coleman R, Lampard J-L (2022) A Review of Pollutant Concentrations in Urban Stormwater Across Eastern Australia, After 20 Years. Front. Environ. Chem. 3:853764.

Fletcher T., Duncan H., Poelsma P., Lloyd S. (2004). *Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures: A Review and Gap Analysis*. Cooperative Research Centre for Catchment Hydrology, Technical Report 04/8, December 2004.

NEPC (1999). National Environment Protection Measure, Assessment of Site Contamination, as amended 2013 (ASC NEPM 2013). National Environment Protection Council.

NSW EPA (2020). *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.* 5 May 2020. NSW Environment Protection Authority.

NHMRC (2008) *Guidelines for Managing Risks in Recreational Water*. National Health and Medical Research Council.

NHMRC & NRMMC (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. Version 3.7 Updated January 2022. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. (ADWG, 2022).

Senversa (2022). Water Management Plan reDirect Resource Recovery Facility – 24 Davis Road, Wetherill Park NSW. 5 April 2022.

Senversa (2023). Surface Water Monitoring Report – Annual 2023, ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW. 21 September 2023.

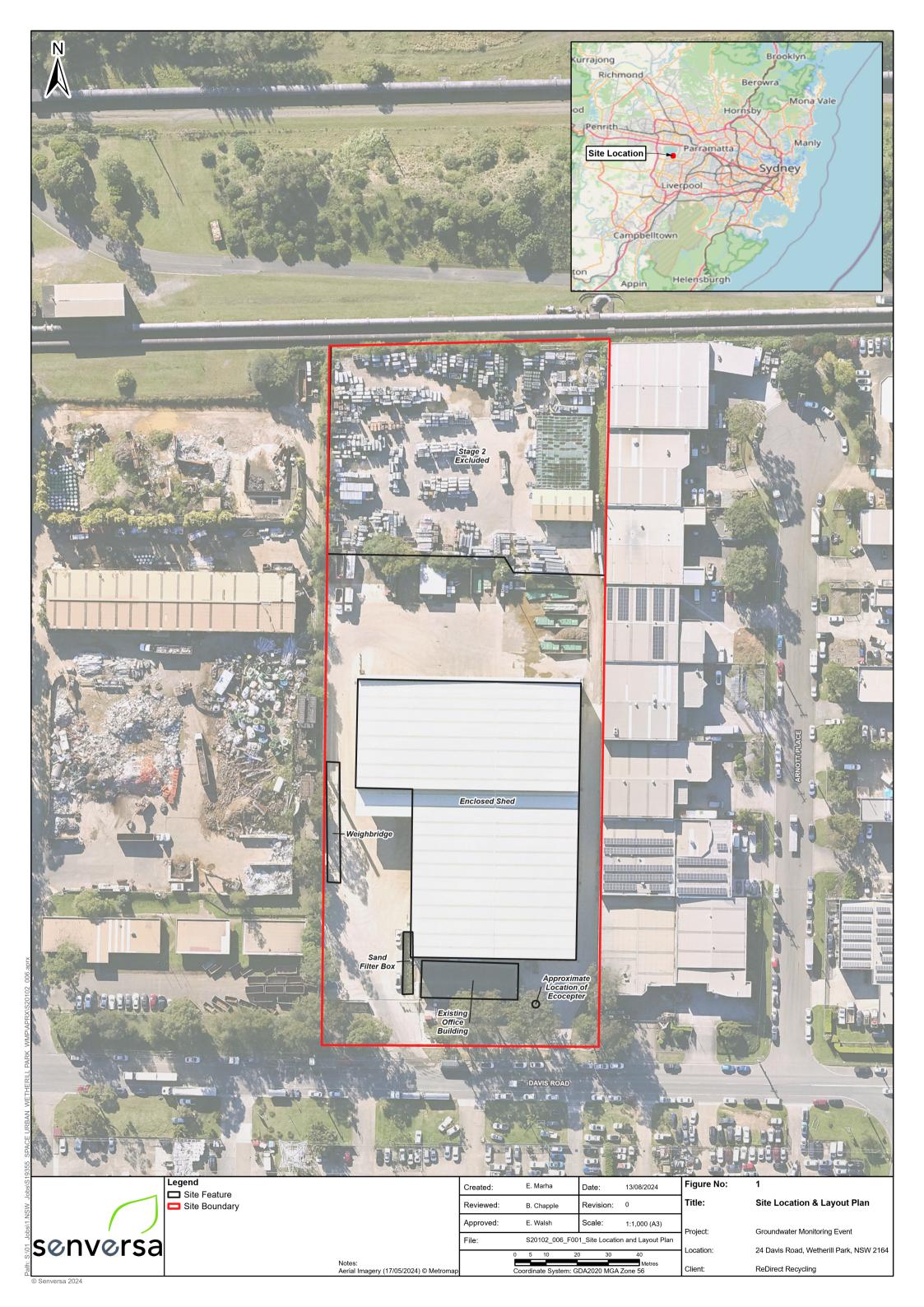

Figures

Figure 1: Site Location & Layout Plan

Figure 2: Surface Water and Groundwater Sampling Locations

Figure 3: Surface Water Exceedances

Figure 4: Groundwater Exceedances

Tables

Table 1: Groundwater Gauging Measurements

Table 2: Groundwater Geochemical Parameters

Table 3: Surface Water Analytical Results

Table 4: Groundwater Analytical Results

Table 1: Groundwater Gauging Measurements

Client: ReDirect Recycling
Site Address: ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW

Monito	oring Data		Survey Data		Groundwater Data									
Location Code	Date Gauged	Easting	Northing	Top of Casing	Depth to Water	Total Well Depth	Depth to Product	Product Thickness	Groundwater Elevation	Gauging Comments				
Code				(m AHD)	(m bTOC)	(m bTOC)	(m bTOC)	(m)	(m AHD)					
MW1	6/02/2023	305715.1	6253955.6		2.145	6.61	-	-						
MW1	8/02/2023	305715.1	6253955.6		2.111	6.61	-	-						
MW1	2/08/2023	305715.1	6253955.6		2.634	6.61	-	-						
MW1	7/02/2024	305715.1	6253955.6		2.25	6.61	-	-						
MW1	9/02/2024	305715.1	6253955.6		2.235	6.61	-	-		Before hydrasleeve sampling				
MW1	9/07/2024	305715.1	6253955.6		1.93	6.61	-	-						
MW1	11/07/2024	305715.1	6253955.6		1.925	6.61	-	-						
MW2	6/02/2023	305714.5	6253975.4		2.96	7.59	-	-						
MW2	8/02/2023	305714.5	6253975.4		2.957	7.59	-	-						
MW2	2/08/2023	305714.5	6253975.4		3.19	7.57	-	-						
MW2	7/02/2024	305714.5	6253975.4		3.01	7.57	-	-						
MW2	9/02/2024	305714.5	6253975.4		2.97	7.57	-	-		Before hydrasleeve sampling				
MW2	9/07/2024	305714.5	6253975.4		2.577	7.58	-	-						
MW2	11/07/2024	305714.5	6253975.4		2.555	7.58	-	-						
MW3	6/02/2023	305677.6	6254060.5		2.971	8.08	-	-						
MW3	8/02/2023	305677.6	6254060.5		2.945	8.08	-	-						
MW3	2/08/2023	305677.6	6254060.5		3.599	8.07	-	-						
MW3	7/02/2024	305677.6	6254060.5		3.18	8.05	-	-						
MW3	9/02/2024	305677.6	6254060.5		3.175	8.05	-	-		Before hydrasleeve sampling				
MW3	9/07/2024	305677.6	6254060.5		2.88	8.05	-	-						
MW3	11/07/2024	305677.6	6254060.5		2.875	8.05	-	-						
MW4	6/02/2023	305722.8	6254066.3		2.205	6.99	-	-						
MW4	8/02/2023	305722.8	6254066.3		2.224	6.99	-	-						
MW4	2/08/2023	305722.8	6254066.3		2.565	6.98	-	-						
MW4	7/02/2024	305722.8	6254066.3		2.65	6.98	-	-						
MW4	9/02/2024	305722.8	6254066.3		2.53	6.98	-	-		Before hydrasleeve sampling				
MW4	14/02/2024	305722.8	6254066.3		2.77	6.98	-	-		Post hydrasleeve sampling				
MW4	9/07/2024	305722.8	6254066.3		2.325	6.98	-	-						
MW4	11/07/2024	305722.8	6254066.3		2.31	6.98	-	-						
MW6	6/02/2023	305682.0	6254069.3		4.444	7.19	-	-						
MW6	8/02/2023	305682.0	6254069.3		4.444	7.19	-	-						
MW6	2/08/2023	305682.0	6254069.3		4.748	7.17	-	-						
MW6	7/02/2024	305682.0	6254069.3		4.369	7.16	-	-						
MW6	9/02/2024	305682.0	6254069.3		4.357	7.16	-	-		Before hydrasleeve sampling				
MW6	9/07/2024	305682.0	6254069.3		3.565	7.16	-	-		Brown silt on IP				
MW6	11/07/2024	305682.0	6254069.3		3.557	7.16	-	-						

Project: Baseline Groundwater Condition Report - 2024

Table 2: Groundwater Geochemical Parameters

Client: ReDirect Recycling

Site Address: ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW

Monitoring We	ell Information						Water Quality	Stabilised Res	sults				
Location Code	Sample Date	DO (mg/L)	EC (µS/cm)	TDS	pН	ORP (Er)	Redox (mV)	Temp (°C)		Field O	oservations		
Location Code	Sample Date	±10%	±3%		±0.05	(mV)	±10mV	±10%	Colour	Sheen	Odour	Turbidity	
MW1	8/02/2023	2.02	22,382	14,548	6.47	28.3	233.3	22.4	orange	no sheen	no odour	Suspended sediments	
MW1	14/08/2023	6.33	19,738	12,830	6.34	116.4	321.4	17.0	colourless to orange	no sheen	no odour	Non-turbid	
MW1	9/02/2024	3.07	25,870	16,816	6.66	38.1	243.1	22.3	colourless	no sheen	no odour	Suspended sediments	
MW1	11/07/2024	1.06	22,394	14,556	6.27	-58.0	147.0	17.5	light brown	no sheen	no odour	Slightly turbid	
MW2	8/02/2023	1.35	21,545	14,004	6.33	154.4	359.4	20.8	colourless	no sheen	no odour	Slightly turbid	
MW2	14/08/2023	1.20	17,006	11,054	6.44	129.0	334.0	17.0	colourless	no sheen	no odour	Slightly turbid	
MW2	9/02/2024	3.05	27,224	17,696	6.59	92.7	297.7	23.2	colourless	no sheen	no odour	Suspended sediments	
MW2	11/07/2024	1.42	23,588	15,332	6.45	-17.6	187.4	18.2	colourless	no sheen	no odour	Suspended sediments	
MW3	8/02/2023	0.79	29,765	19,347	5.78	65.7	270.7	23.6	colourless	no sheen	no odour	Slightly turbid	
MW3	14/08/2023	0.92	24,992	16,245	5.91	62.6	267.6	15.9	colourless	no sheen	no odour	Slightly turbid	
MW3	9/02/2024	2.11	34,645	22,519	6.50	1.5	206.5	23.5	light brown	no sheen	no odour	Slightly turbid	
MW3	11/07/2024	2.20	28,201	18,331	5.86	15.0	220.0	18.3	light brown	no sheen	no odour	Slightly turbid	
MW4	8/02/2023	0.00	17,881	11,623	6.54	69.0	274.0	22.7	colourless	no sheen	no odour	Slightly turbid	
MW4	14/08/2023	1.70	7,133	4,636	6.55	18.7	223.7	17.1	colourless	no sheen	no odour	Non-turbid	
MW4	14/02/2024	3.80	19,817	12,881	6.66	-11.2	193.8	29.6	colourless	no sheen	no odour	Slightly turbid	
MW4	11/07/2024	1.29	14,807	9,625	6.64	-58.7	146.3	18.4	colourless	no sheen	no odour	Non-turbid	
MW6	8/02/2023	0.10	2,323	1,510	7.19	89.8	294.8	22.7	light brown	no sheen	no odour	Moderately turbid	
MW6	14/08/2023	0.81	1,362	885	7.22	-6.4	198.6	16.8	yellow	no sheen	sulphurous	Slightly turbid	
MW6	9/02/2024	5.30	2,204	1,433	7.41	56.6	261.6	22.5	colourless	no sheen	no odour	Slightly turbid	
MW6	11/07/2024	-	-	-	-	-	-	-	parameter	parameters not collected due to limited water available			

Comments

Values presented are those after stabilisation. In accordance with EPA Publication 669, the parameters were considered stable when three consecutive readings (obtained several minutes apart) were within the specified parameters.

DO = Dissolved Oxygen

EC = Electrical Conductivity.

TDS = Total Dissolved Solids

ORP = Oxidation Reduction Potential as millivolts (mV). Field values (Er values, mV) taken with redox probe with a platinum electrode and silver/silver chloride reference electrode. For interpretation of the Er results can be converted to Eh values using the following conversion: Eh (mV) = Er (mV) + 205.

^{*} TDS calculated by EC multiplied by 0.65

					Location Code	SW1	SW1	SW1	SW1	SW2	SW2	SW2	SW2
					Field ID	SW1	SW1	SW 1	SW1	SW2	SW2	SW 2	SW2
					Date	10/02/2023	14/08/2023	07/02/2024	09/07/2024	10/02/2023	14/08/2023	07/02/2024	09/07/2024
					Sample Type	Normal							
	1	1	ANIZO (0040)	ANIZEGO (2022)	Lab Report No.	ES2304342	ES2327328	ES2403942	ES2422553	ES2304342	ES2327328	ES2403942	ES2422553
	Unit	EQL	ANZG (2018) Aquatic ecosystems DGV - highly disturbed (90%) -	ANZECC (2000) - physical stressors - South-east Australia Lowland River	NHMRC (2008) Primary Contact Recreation - Health								
Physical Parameters													
Total Dissolved Solids Total Suspended Solids	mg/L mg/L	10 5				240 86	316 238	374 91	7,260	352 69	105 39	394 8	282 90
pH (Lab)	pH Units	0.01			6.5-8.5 ^{#10}	-	8.03	-	7,260	- 69	7.75	-	90
Metals	prionits	0.01			0.5-0.5	-	8.03	-			7.75	-	-
Arsenic (filtered)	mg/L	0.001	0.042#1		0.1 ^{#11}	0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	0.003	< 0.001
Cadmium (filtered)	mg/L	0.0001	0.0004#2		0.02 ^{#11}	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (filtered)	mg/L	0.001	0.0033 ^{#3}		0.5 ^{#12}	0.002	0.001	< 0.001	0.001	0.002	< 0.001	< 0.001	0.001
Copper (filtered)	mg/L	0.001	0.0018 ^{#4}		20 ^{#11}	0.006	0.004	0.004	0.003	0.003	0.001	0.004	0.004
Iron (filtered)	mg/L	0.05	40		140 ^{#13}	0.06	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05
Lead (filtered)	mg/L	0.001	0.0056#2		0.1 ^{#11}	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Manganese (filtered)	mg/L	0.001	2.5 ^{#4}		5 ^{#11}	0.01	0.016	0.02	0.045	<0.01	0.007	<0.01	0.015
Mercury (filtered)	mg/L	0.0001	0.0006#5		0.01 ^{#11}	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Nickel (filtered)	mg/L	0.001	0.013 ^{#2} 0.015 ^{#2}		0.2 ^{#11} 60 ^{#13}	0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Zinc (filtered) Inorganics	mg/L	0.005	0.015		60	<0.005	0.005	<0.005	<0.005	<0.005	0.038	0.014	0.023
Total Oxidised Nitrogen (as N)	mg/L	0.01		0.04		0.36	0.68	0.41	0.32	0.50	0.62	0.28	0.51
Total Kjeldahl Nitrogen	mg/L	0.1				0.3	1.7	1.7	22.6	1.0	0.7	0.9	3.8
Total Nitrogen (as N)	mg/L	0.1		0.35		0.7	2.4	2.1	22.9	1.5	1.3	1.2	4.3
Phosphorus (as P) BTEX	mg/L	0.01		0.025		0.06	0.35	0.10	6.68	0.19	0.09	0.03	0.63
Benzene	μg/L	1	1,300#4		10 ^{#11}	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	2	230 ^{#4}		8,000 ^{#11}	<2	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene	μg/L	2	110 ^{#4}		3,000**11	<2	<2	<2	<2	<2	<2	<2	<2
Xylene (m & p)	μg/L	2			.,	<2	<2	<2	<2	<2	<2	<2	<2
Xylene (o)	μg/L	2	470 ^{#4}			<2	<2	<2	<2	<2	<2	<2	<2
Total Xylene	μg/L	2			6,000 ^{#11}	<2	<2	<2	<2	<2	<2	<2	<2
Total BTEX	μg/L	1				<1	<1	<1	<1	<1	<1	<1	<1
Total Petroleum Hydrocarbons C6-C9 Fraction	μg/L	20				<20	<20	<20	<20	<20	<20	<20	<20
C10-C14 Fraction	μg/L	50				<50	<50	490	<50	<50	<50	<50	<50
C15-C28 Fraction	μg/L	100				<100	<100	560	290	<100	<100	<100	<100
C29-C36 Fraction	μg/L	50				<50	<50	<50	130	<50	<50	<50	<50
C10-C36 Fraction (Sum)	μg/L	50				<50	<50	1,050	420	<50	<50	<50	<50
Total Recoverable Hydrocarbons C6-C10 Fraction	μg/L	20				<20	<20	<20	<20	<20	<20	<20	<20
C6-C10 Fraction minus BTEX (F1)	µg/L	20	440#6		900#14	<20	<20	<20	<20	<20	<20	<20	<20
>C10-C16 Fraction	μg/L	100				<100	<100	630	<100	<100	<100	<100	<100
>C10-C16 Fraction minus naphthalene (F2)	μg/L	100	440 ^{#6}		900#14	<100	<100	630	<100	<100	<100	<100	<100
>C16-C34 Fraction	μg/L	100	640 ^{#7}		900#15	<100	<100	460	380	<100	<100	<100	<100
>C34-C40 Fraction	μg/L	100	640 ^{#8}		900#15	<100	<100	<100	<100	<100	<100	<100	<100
>C10-C40 Fraction (Sum)	μg/L	100				<100	<100	1,090	380	<100	<100	<100	<100
PAHs Acceptable po	ug/l	4			5,300 ^{#13}	-1.0	-4.0	-4.0	-4.0	-4.0	-4.0	-4.0	-1.0
Acenaphthene Acenaphthylene	μg/L μg/L	1			5,300	<1.0 <1.0							
Anthracene	μg/L	1	0.4 ^{#5}		18,000#13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	μg/L	1			12,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	μg/L	0.5	0.2#5		0.1 ^{#11}	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	μg/L μg/L	1				<1.0 <1.0							
Dibenz(a,h)anthracene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	μg/L	1	1.4 ^{#5}		8,000 ^{#13}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	μg/L	1			2,900#13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Indeno(1,2,3-c,d)pyrene	μg/L	1	- #4			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene (VOC)	μg/L	1	37#4		700#16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene (VOC) Phenanthrene	μg/L μg/L	5 1	2 ^{#5}			<1.0	<1.0	<1.0	<5 <1.0	<1.0	<1.0	<1.0	<5 <1.0
Pyrene	μg/L μg/L	1	2		1,200#13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene TEQ (Zero)	μg/L	0.5			0.1 ^{#17}	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L	0.5				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenois													
2-Methylphenol	μg/L	1			9,300 ^{#13}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitrophenol	μg/L	1	0#9		0.000#13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol 3-&4-Methylphenol (m&p-cresol)	μg/L μg/L	2	2 ^{#9}		3,600#13	<1.0 <2.0							
4-Chloro-3-methylphenol	μg/L μg/L	1			14,000#13	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<1.0	<2.0
Phenol	μg/L μg/L	1	600#4		58,000 ^{#13}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Halogenated Phenois	P9/∟		000		20,000	/1.0	71.0	V1.0	V1.0	V1.0	V1.0	V1.0	<1.0
2,4,5-Trichlorophenol	μg/L	1			12,000 ^{#13}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4,6-Trichlorophenol	μg/L	1	20 ^{#5}		200#11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dichlorophenol	μg/L	1	160#5	4	2,000#11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,6-Dichlorophenol	μg/L	1	34 ^{#9}			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	μg/L	1	490#5		3,000 ^{#11}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	µg/L	2	10 ^{#5}		100#11	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

- #1 ANZG (2018). The more conservative value (Arsenic AsV) out of the available arsenic species was adopted for initial screening purposes.
 #2 ANZG (2018). Adjust DGVs for site-specific hardness using the hardness-dependent algorithm in Warne et al. (2018)
 #3 ANZG (2018). The more conservative value (Chromium CrIII) out of the available chromium species was adopted for initial screening purposes.

- #4 ANZG (2018)
 #5 ANZG (2018). Higher species protection level adopted as recommended
 #6 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
 #7 CRWB (2019). Value for diesel (C8-C21) mixture.
- #8 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening. #9 ANZG (2018). Unknown species protection level
- #11 NHMRC (2011) Health. Multiplied by a factor of x10
 #12 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded. Multiplied by a factor of x10
 #13 USEPA Tap Water RSL (TR=1E-06; THQ=0.1) May 2024. Multiplied by a factor of x10
- #14 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10
- #15 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10 #16 NHMRC (2011) Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10 #17 NHMRC (2011) Health. Value is for BaP but applies to TEQ. Multiplied by a factor of x10

MW2 MW2

MW2

MW2

MW3

MW3

MW3 MW3

MW1 MW1 MW1

					Field ID	MW1	MW1	MW1	MW1	MW2	MW2	MW2	MW2	MW3	MW3	MW3	MW3
					Date	08/02/2023	14/08/2023	09/02/2024	11/07/2024	08/02/2023	14/08/2023	09/02/2024	11/07/2024	08/02/2023	14/08/2023	09/02/2024	11/07/2024
					Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Highest Conc.	Highest Conc.	Highest Conc.	Highest Conc.
					Lab Report No.	ES2304011	ES2327328	ES2404239	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038	ES2304011 and 316159	ES2327328 and 1020195	ES2404239 and 1067666	ES2423038 and 1117968
	Unit	EQL	ANZG (2018) Aquatic ecosystems DGV- highly disturbed (90%) freshwater	NEPM (2013) Table 1A(4) Comm/Ind HSL D Vapour Intrusion, Sand (2m-4m)	NHMRC (2008) Primary Contact Recreation - Health												
Physical Parameters																	
Electrical Conductivity	μS/cm	1				25,800	-	-	-	25,700	-	-	-	34,200	-	-	-
Total Dissolved Solids	mg/L	1			6.5-8.5 ^{#12}	16,800	-	-	-	16,700	-	-	-	22,200	-	-	-
pH (Lab)	pH Units	0.01			6.5-8.5	7.74	-	-	-	7.70	-	-	-	7.09	-	-	-
Metals Arsenic (filtered)		0.004	0.042#2		0.1#13	0.044	0.000	0.040	0.007	0.004	0.004	0.004	0.000	0.004	0.000	0.044	0.000
Cadmium (filtered)	mg/L	0.001	0.042		0.02 ^{#13}	0.011	0.008	0.012	0.007	0.004	0.004	0.004	0.008	0.004	0.002	0.011	0.003
	mg/L	0.0001			0.02 0.5 ^{#14}	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0010	<0.0010	<0.0001
Chromium (filtered)	mg/L	0.001	0.0033 ^{#4}			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.010	0.005	<0.001
Copper (filtered)	mg/L	0.001	0.0018 ^{#5}		20 ^{#13}	0.015	<0.001	<0.001	0.003	0.011	<0.001	<0.001	<0.001	<0.010	0.002	0.006	0.002
Iron (filtered)	mg/L	0.01	#2		140 ^{#15}	4.97	2.01	3.96	87.2	0.40	0.58	0.54	2.30	5.05	6.04	8.08	7.4
Lead (filtered)	mg/L	0.001	0.0056 ^{#3}		0.1 ^{#13}	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.010	0.002	0.005	< 0.001
Manganese (filtered)	mg/L	0.001	2.5 ^{#5}		5 ^{#13}	0.92	2.26	0.59	4.84	0.96	1.00	1.76	3.28	6.15	6.57	7.08	7.4
Mercury (filtered)	mg/L	0.00005	0.0006 ^{#6}		0.01 ^{#13}	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	mg/L	0.001	0.013 ^{#3}		0.2 ^{#13}	0.023	0.036	0.015	0.156	0.006	0.005	0.006	0.006	0.191	0.207	0.197	0.200
Zinc (filtered)	mg/L	0.001	0.015 ^{#3}		60 ^{#15}	0.012	0.045	0.016	0.174	0.008	0.009	0.009	< 0.005	0.23	0.122	0.253	0.25
Inorganics			#5					<u> </u>		<u> </u>		<u> </u>					
Ammonia (as N)	mg/L	0.01	1.43 ^{#5}		#40	0.71	0.49	0.48	0.19	0.52	0.52	0.44	0.26	0.22	0.29	0.29	0.28
Nitrate (as N)	mg/L	0.01	3.8 ^{#7}		110 ^{#16}	<0.10	0.02	< 0.01	< 0.01	0.03	< 0.01	<0.01	0.02	< 0.01	< 0.01	0.10	0.01
Nitrite (as N)	mg/L	0.01			9 ^{#17}	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Oxidised Nitrogen (as N)	mg/L	0.01				<0.10	0.02	< 0.01	< 0.01	0.03	< 0.01	< 0.01	0.02	0.02	< 0.01	0.11	0.02
Total Kjeldahl Nitrogen	mg/L	0.1				0.9	0.6	0.6	1.1	1.0	0.6	0.8	0.6	1.3	0.5	1.3	1.0
Total Nitrogen (as N)	mg/L	0.1				0.9	0.6	0.6	1.1	1.0	0.6	0.8	0.6	1.3	0.5	1.4	1.0
Phosphorus (as P)	mg/L	0.01				< 0.05	0.02	<0.01	0.04	0.06	0.04	0.05	0.05	0.8	0.02	0.08	0.04
Phosphate (as P) Ortho-phosphate (as P)	mg/L	0.01				-0.04	-	-	-	- 0.00	-	-	-	-0.01	0.03	0.05	0.03
Fluoride	mg/L	0.01			15 ^{#13}	<0.01	-	-	-	0.02	-	-	-	<0.01	-	-	-
Sodium Absorption Ratio (filtered)	mg/L	0.1 0.01			13	0.8 30.4	-	-		0.7 31.6	-	-	-	1.2 37.8	-	-	
Major lons	+ -	0.01				30.4	 			31.0	_ 	- -	-	37.0	-	-	
Calcium (filtered)	mg/L	1				273	-	-	-	232	-	-	-	181	-	-	-
Chloride	mg/L	1				8,840	-	-	-	8,800	-	-	-	11,900	-	-	-
Magnesium (filtered)	mg/L	1				810	-	-	-	826	-	-	-	1,040	-	-	-
Potassium (filtered)	mg/L	1				25	-	-	-	21	-	-	-	14	-	-	-
Sulfate (as SO4) (filtered)	mg/L	1				691	- 1	-	- 1	756	-	-	-	907	-	-	-
Sodium (filtered)	mg/L	1				4,430	-	-	-	4,590	-	-	-	5,980	-	-	-
Anions Total	meq/L	0.01				282	-	-	-	280	-	-	-	359	-	-	-
Cations Total	meq/L	0.01				274	-	-	-	280	-	-	-	355	-	-	-
Ionic Balance	%	0.01				1.52	-	-	-	0.09	-	-	-	0.55	-	-	-
Alkalinity		<u> </u>					igwdown					 '					
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	mg/L	1				916	-	-	-	815	-	-	-	222	-	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L mg/L	1				<1 <1	-	-	-	<1 <1	-	-	-	<1 <1	-	-	-
Total Alkalinity (as CaCO3)	mg/L	1				916	-	-	-	815	-	-	-	222	-	-	-
Hardness (as CaCO3) (filtered)	mg/L	1				4,020	-	-	-	3,980	-	-	-	4,730	-	-	-
ВТЕХ	T					,,			 		 			,			
Benzene	μg/L	1	1,300#5	5,000 ^{#1}	10 ^{#13}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	μg/L	1	230#5	NL #1	8,000#13	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ethylbenzene	μg/L	1	110 ^{#5}	NL ^{#1}	3,000#13	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylene (m & p)	µg/L	2			,	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylene (o)	μg/L	1	470 ^{#5}			<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Total Xylene	μg/L	2		NL ^{#1}	6,000#13	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Total BTEX	µg/L	1			.,	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total Petroleum Hydrocarbons	T										1		1				1
C6-C9 Fraction	μg/L	10				<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
C10-C14 Fraction	μg/L	50				<50	<50	<50	250	<50	<50	<50	<50	<50	<50	<50	90
C15-C28 Fraction	μg/L	100				<100	<100	<100	170	<100	<100	<100	<100	140	<100	<100	810
C29-C36 Fraction	μg/L	50				<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	300
C10-C36 Fraction (Sum)	μg/L	50				<50	<50	<50	420	<50	<50	<50	<50	140	<50	<50	810
Total Recoverable Hydrocarbons		4.5				~~							0.5	00		000	22
C6-C10 Fraction	μg/L	10	4.40#R	0.000#1	200#18	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
C6-C10 Fraction minus BTEX (F1)	μg/L	10	440 ^{#8}	6,000#1	900#18	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
>C10-C16 Fraction	μg/L	50	#9	#1	#18	<100	<100	<100	260	<100	<100	<100	<100	130	<100	<100	110
>C10-C16 Fraction minus naphthalene (F2)	μg/L	50	440#8	NL ^{#1}	900 ^{#18}	<100	<100	<100	260	<100	<100	<100	<100	130	<100	<100	110
	μg/L	100	640 ^{#9}	I	900#19	<100	<100	<100	260	<100	<100	<100	<100	<100	<100	<100	600
>C16-C34 Fraction			#40		#10			-			+		1	1	1		
>C16-C34 Fraction >C34-C40 Fraction >C10-C40 Fraction (Sum)	μg/L μg/L	100	640 ^{#10}		900 ^{#19}	<100 <100	<100 <100	<100 <100	<100 520	<100 <100	<100 <100	<100 <100	<100 <100	<100 130	<100 <100	<100 <100	200 910

Location Code MW1

				i									,
					Location Code	MW4	MW4	MW4	MW4	MW6	MW6	MW6	MW6
					Field ID Date	MW4 08/02/2023	MW4 14/08/2023	MW4 14/02/2024	MW4 11/07/2024	MW6 08/02/2023	MW6 14/08/2023	MW6 09/02/2024	MW6 11/07/2024
					Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
						ES2304011	ES2327328	ES2404752	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038
	1	T			Lab Report No.	E32304011	E32321326	E32404732	E32423036	E32304011	E32321326	E32404239	E32423036
			ANZG (2018)	NEPM (2013) Table									
	Unit	EQL	Aquatic ecosystems DGV-	1A(4) Comm/Ind HSL	NHMRC (2008) Primary Contact								
	Offic		highly disturbed (90%)	_	Recreation - Health								
			freshwater	Sand (2m-4m)									
Physical Parameters													
Electrical Conductivity	μS/cm	1				19,900	-	-	-	2,310	-	-	-
Total Dissolved Solids	mg/L	1			#12	12,900	-	-	-	1,500	-	-	-
pH (Lab)	pH Units	0.01			6.5-8.5 ^{#12}	7.72	-	-	-	8.06	-	-	-
Metals Arsenic (filtered)	mg/L	0.001	0.042#2		0.1#13	0.005	0.007	0.008	0.007	< 0.001	0.002	0.002	<0.001
Cadmium (filtered)	mg/L	0.0001	0.0004#3		0.02#13	<0.0001	<0.007	<0.0001	<0.007	<0.001	<0.002	<0.002	<0.0001
Chromium (filtered)	mg/L	0.001	0.0033#4		0.5#14	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper (filtered)	mg/L	0.001	0.0018 ^{#5}		20#13	0.005	<0.001	0.001	<0.001	0.003	<0.001	<0.001	<0.001
Iron (filtered)	mg/L	0.01			140#15	1.22	2.91	2.04	1.90	< 0.05	0.20	<0.05	<0.05
Lead (filtered)	mg/L	0.001	0.0056#3		0.1#13	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese (filtered)	mg/L	0.001	2.5 ^{#5}		5 ^{#13}	5.45	6.04	5.03	4.00	0.04	0.225	0.06	<0.01
Mercury (filtered)	mg/L	0.00005	0.0006 ^{#6}		0.01 ^{#13}	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Nickel (filtered)	mg/L	0.001	0.013 ^{#3}		0.2 ^{#13}	0.021	0.020	0.017	0.011	< 0.001	0.002	0.001	<0.001
Zinc (filtered)	mg/L	0.001	0.015 ^{#3}		60 ^{#15}	< 0.005	< 0.005	0.006	< 0.005	< 0.005	0.006	< 0.005	< 0.005
Inorganics			#F										
Ammonia (as N)	mg/L	0.01	1.43 ^{#5}		#16	0.34	0.32	0.30	0.28	0.02	0.09	<0.01	<0.01
Nitrate (as N)	mg/L	0.01	3.8 ^{#7}		110 ^{#16} 9 ^{#17}	0.01	<0.01	<0.01	<0.01	1.00	0.18	1.93	1.64
Nitrite (as N) Total Oxidised Nitrogen (as N)	mg/L	0.01			9*''	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	0.25 1.25	<0.01 0.18	<0.01 1.93	<0.01 1.64
Total Kjeldahl Nitrogen	mg/L mg/L	0.01				1.1	<0.01 0.5	1.2	0.4	0.4	0.18	1.93	0.3
Total Nitrogen (as N)	mg/L	0.1				1.1	0.5	1.2	0.4	1.6	0.6	2.9	1.9
Phosphorus (as P)	mg/L	0.01				0.09	0.01	0.07	0.04	0.09	0.14	0.03	0.05
Phosphate (as P)	mg/L	0.01				-	-	-	-	-	-	-	-
Ortho-phosphate (as P)	mg/L	0.01			#12	< 0.01	-	-	-	< 0.01	-	-	-
Fluoride	mg/L	0.1			15 ^{#13}	1.6	-	-	-	1.8	-	-	-
Sodium Absorption Ratio (filtered) Major Ions	-	0.01				21.4	-	-	-	6.70	-	-	-
Calcium (filtered)	mg/L	1				299	-	-	-	50	-	-	-
Chloride	mg/L	1				6,680	-	-	-	341	-	-	-
Magnesium (filtered)	mg/L	1				786	-	-	-	112	-	-	-
Potassium (filtered) Sulfate (as SO4) (filtered)	mg/L	1				35	-	-	-	6	-	-	-
Sodium (filtered)	mg/L mg/L	1				280 3,100	-	-	-	44 373	-	-	-
Anions Total	meg/L	0.01				216	-	-	-	27.2	-	-	-
Cations Total	meq/L	0.01				215	-	-	-	28.1	-	-	-
Ionic Balance	%	0.01				0.25	-	-	-	1.61	-	-	-
Alkalinity													
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	mg/L mg/L	1				1,110 <1	-	-	-	834 <1	-	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L	1				<1	-	-	-	<1	-	-	-
Total Alkalinity (as CaCO3)	mg/L	1				1,110	-	-	-	834	-	-	-
Hardness (as CaCO3) (filtered)	mg/L	1				3,980	-		-	586	-	-	-
BTEX			4.000#5	E 000#1	40#13								
Benzene	μg/L	1	1,300 ^{#5}	5,000 ^{#1}	10 ^{#13} 8,000 ^{#13}	<1	<1	<1	<1	<1	<1	<1	<1
Toluene Ethylbenzene	μg/L	1	230" ⁵ 110 ^{#5}	NL ^{#1} NL ^{#1}	8,000*** 3.000 ^{#13}	<2	<2	2	<2	<2	<2	<2	<2
Xylene (m & p)	μg/L μg/L	2	110	NL	3,000	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2
Xylene (o)	μg/L	1	470 ^{#5}			<2	<2	<2	<2	<2	<2	<2	<2
Total Xylene	μg/L	2		NL #1	6,000#13	<2	<2	<2	<2	<2	<2	<2	<2
Total BTEX	μg/L	1				<1	<1	2	<1	<1	<1	<1	<1
Total Petroleum Hydrocarbons													
C6-C9 Fraction	μg/L	10				<20	<20	<20	<20	<20	<20	<20	<20
C10-C14 Fraction C15-C28 Fraction	μg/L μg/L	50 100				<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100
C29-C36 Fraction	μg/L	50				<50	<50	<50	<50	<50	<50	<50	<50
C10-C36 Fraction (Sum)	μg/L	50				<50	<50	<50	<50	<50	<50	<50	<50
Total Recoverable Hydrocarbons											_		
C6-C10 Fraction	μg/L	10	#R	0.0041	#18	<20	<20	<20	<20	<20	<20	<20	<20
C6-C10 Fraction minus BTEX (F1) >C10-C16 Fraction	μg/L	10	440 ^{#8}	6,000#1	900 ^{#18}	<20	<20	<20	<20	<20	<20	<20	<20
>C10-C16 Fraction >C10-C16 Fraction minus naphthalene (F2)	μg/L μg/L	50 50	440#8	NL ^{#1}	900#18	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100
>C10-C16 Fraction minus napritrialene (F2) >C16-C34 Fraction	μg/L μg/L	100	640 ^{#9}	INC	900 ^{#19}	<100	<100	<100	<100	<100	<100	<100	<100
>C34-C40 Fraction	μg/L	100	640 ^{#10}		900#19	<100	<100	<100	<100	<100	<100	<100	<100
		50				<100	<100	<100	<100	<100	<100	<100	<100
>C10-C40 Fraction (Sum)	μg/L	30	the state of the s			<100	<100	<100	<100	<100	<100	<100	4.00

Location Code	MW1	MW1	MW1	MW1	MW2	MW2	MW2	MW2	MW3	MW3	MW3	MW3
Field ID	MW1	MW1	MW1	MW1	MW2	MW2	MW2	MW2	MW3	MW3	MW3	MW3
Date	08/02/2023	14/08/2023	09/02/2024	11/07/2024	08/02/2023	14/08/2023	09/02/2024	11/07/2024	08/02/2023	14/08/2023	09/02/2024	11/07/2024
Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Highest Conc.	Highest Conc.	Highest Conc.	Highest Conc.
	ES2304011	ES2327328	ES2404239	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038
Lah Report No		2304011 202321320							and 316150	and 1020105	and 1067666	and 1117069

				Lab Report No.	ES2304011	ES2327328	ES2404239	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038	and 316159	and 1020195	and 1067666	and 1117968
Unit	EQL	DGV-	D	NHMRC (2008) Primary Contact Recreation - Health												
μg/L	1			5,300 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	1	0.4 ^{#6}		18,000 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	0.5	0.2 ^{#6}		0.1 ^{#13}	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	2				-	-	-	-	-	-	-	-	-	-	-	-
	1															<1.0
																<1.0
	1	uc		#15		1						l	1			<1.0
	1	1.4**			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	1			2,900#15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	1	""			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	1	37#5	NL #1	700#20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	5				-	-	-	<5	-	-	-	<5	-	-	-	<5
μg/L	1	2 ^{#6}			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
μg/L	0.5			0.1 ^{#21}	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
μg/L	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
μg/L	5			0.1 ^{#21}	-	-	-	-	-	-	-	-	-	-	-	-
μg/L	1				-	-	-	-	-	-	-	-	0	-	-	-
μg/L	1			9,300 ^{#15}	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	1				<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	1	2 ^{#11}		3,600 ^{#15}	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	2				<2.0	-	-	-	<2.0	-	-	-	<2.0	-	-	-
μg/L	1				<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	1	600 ^{#5}		58,000 ^{#15}	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	1			12,000 ^{#15}	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
μg/L	1	20 ^{#6}		200#13	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
	1	160 ^{#6}		2,000#13	<1.0	-	-	-	<1.0	-	-	-	<1.0	-	-	-
	1	34 ^{#11}		,		-	-	-		-	-	-		-	-	-
	1			3.000#13		_	_	-		_	_	_		_	-	_
	2					<u> </u>		_		_	_		1	<u> </u>	_	
	Hg/L H	ру/L 1	Unit EQL Aquatic ecosystems DGV- highly disturbed (90%) freshwater µg/L	Unit EQL Aquatic ecosystems DGV-highly disturbed (90%) freshwater µg/L	Unit EQL	Unit EQL ANZG (2018) Aquatic ecosystems DGV- highly disturbed (90%) freshwater 14,40 Comm/Ind HSL D Primary Contact Recreation - Health 14,00 Primary Contact Recreation - Health 15,300 Primary Contact Recreation - Health 14,00 Primary Contact Recreation - Health 15,300 Primary Contact Recreation - Health 16,300 Pr	Unit EQL ANZG (2018) Aquatic ecosystems DGV Nighly disturbed (90%) Freshwater Name (2m-4m) NHMRC (2008) Primary Contact Recreation - Health Primary Contact Primary	Unit EQL Aquatic ecosystems DGV DGV highly disturbed (90%) freshwater NHMRC (2008) Primary Contact Recreation - Health Primary Contact Primary Contact Recreation - Health Primary Contact Primary Contact Recreation - Health Primary Contact Primar	Unit ECL ANZG (2018) ANZG (2018) D ANZG (2018) D	Variable Color Color	Unit Eol. Aquatic ecosystems b D6V- phythy disturbed (90%) Phythy disturbed (90%) Primary Contact Recreation - Health Sand (2m-4m) руд. 1	Unit ECL	Unit ECL August coopystems Neph (2013) Table August coopystems OCV OCV	Lau Psychia Lau Psychia	List Fig. ANZG (2018) New (2013) Table Ne	Unit EOL

Comments

- #1 Value for shallow (2-4 m bgl) sand aquifer adopted for initial screening.
- #2 ANZG (2018). The more conservative value (Arsenic AsV) out of the available arsenic species was adopted for initial screening purposes.
- #3 ANZG (2018). Adjust DGVs for site-specific hardness using the hardness-dependent algorithm in Warne et al. (2018)
- #4 ANZG (2018). Chromium CrIII adopted for initial screening purposes.
- #5 ANZG (2018)
- #6 ANZG (2018). Higher species protection level adopted as recommended
- #7 Derived by NZ NIWA (2013) using ANZECC (2000) methodology. ANZECC (2000) value was withdrawn due to calculation errors.
- #8 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
- #9 CRWB (2019). Value for diesel (C8-C21) mixture.
- #10 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening.
- #11 ANZG (2018). Unknown species protection level
- #12 NHMRC (2008)
- #13 NHMRC (2011) Health. Multiplied by a factor of x10
- #14 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded. Multiplied by a factor of x10
- #15 USEPA Tap Water RSL (TR=1E-06; THQ=0.1) May 2024. Multiplied by a factor of x10
- #16 NHMRC (2011) Health. Converted from guideline for nitrate (as nitrate). Multiplied by a factor of x10
- #17 NHMRC (2011) Health. Converted from guideline for nitrite (as nitrite). Multiplied by a factor of x10
- #18 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10
- #19 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10
- #20 NHMRC (2011) Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10
- #21 NHMRC (2011) Health. Value is for BaP but applies to TEQ. Multiplied by a factor of x10

MW4

MW4

MW6

MW6

MW6

MW6

MW6

MW6

MW6

MW6

MW4

MW4

					Date	08/02/2023	14/08/2023	14/02/2024	11/07/2024	08/02/2023	14/08/2023	09/02/2024	11/07/2024
					Sample Type	Normal							
					Lab Report No.	ES2304011	ES2327328	ES2404752	ES2423038	ES2304011	ES2327328	ES2404239	ES2423038
	Unit	EQL	ANZG (2018) Aquatic ecosystems DGV- highly disturbed (90%) freshwater	NEPM (2013) Table 1A(4) Comm/Ind HSL D Vapour Intrusion, Sand (2m-4m)	NHMRC (2008) Primary Contact Recreation - Health								
PAHs													
Acenaphthene	μg/L	1			5,300 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	μg/L	1	0.4 ^{#6}		18,000 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	μg/L	0.5	0.2 ^{#6}		0.1 ^{#13}	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b+j)fluoranthene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g,h,i)perylene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j+k)fluoranthene	μg/L	2				-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene Dibenz(a,h)anthracene	μg/L	1				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
- 	μg/L	1	1.4 ^{#6}		8,000 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	μg/L	1	1.4		2,900 ^{#15}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	μg/L	1			2,900	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Indeno(1,2,3-c,d)pyrene	μg/L	1	37 ^{#5}	NL ^{#1}	700#20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene Naphthalene (VOC)	μg/L μg/L	1 5	31	NL	700	<1.0	<1.0	<1.0	<1.0 <5	<1.0	<1.0	<1.0	<1.0 <5
Phenanthrene	μg/L	1	2 ^{#6}			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
-		1	2		1,200 ^{#15}					<1.0			
Pyrene Benzo(a)pyrene TEQ (Zero)	μg/L	-			0.1 ^{#21}	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0
Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L μg/L	0.5 0.5			0.1	<0.5 <0.5							
Benzo(a)pyrene TEQ	μg/L	5			0.1#21		<0.5	<0.5	<0.5	<0.5	<0.5		
Total Positive PAHs	μg/L μg/L	1			0.1	-	-	-	-	-	-	-	-
Phenois	P9/ L	'					_	_	_	_	_	-	-
2-Methylphenol	μg/L	1			9,300#15	<1.0	-	_	_	<1.0	-	-	-
2-Nitrophenol	μg/L	1			2,222	<1.0	-	-	-	<1.0	-	-	-
2,4-Dimethylphenol	μg/L	1	2 ^{#11}		3,600#15	<1.0	_	-	_	<1.0	-	-	_
3-&4-Methylphenol (m&p-cresol)	μg/L	2			ŕ	<2.0	-	-	-	<2.0	-	-	-
4-Chloro-3-methylphenol	μg/L	1			14,000 ^{#15}	<1.0	-	-	-	<1.0	-	-	-
Phenol	μg/L	1	600 ^{#5}		58,000 ^{#15}	<1.0	-	-	-	<1.0	-	-	-
Halogenated Phenols					-								
2,4,5-Trichlorophenol	μg/L	1			12,000 ^{#15}	<1.0	-	-	-	<1.0	-	-	-
2,4,6-Trichlorophenol	μg/L	1	20 ^{#6}		200#13	<1.0	-	-	-	<1.0	-	-	-
2,4-Dichlorophenol	μg/L	1	160 ^{#6}		2,000#13	<1.0	-	-	-	<1.0	-	-	-
2,6-Dichlorophenol	μg/L	1	34 ^{#11}			<1.0	-	-	-	<1.0	-	-	-
2-Chlorophenol	μg/L	1	490 ^{#6}		3,000#13	<1.0	-	-	-	<1.0	-	-	-
Pentachlorophenol	μg/L	2	10 ^{#6}		100#13	<2.0	-	-	-	<2.0	-	-	-

Location Code

Field ID

MW4

MW4

MW4

MW4

Comments

- #1 Value for shallow (2-4 m bgl) sand aquifer adopted for initial screening.
- #2 ANZG (2018). The more conservative value (Arsenic AsV) out of the available arsenic species was adopted for initial screening purpor
- #3 ANZG (2018). Adjust DGVs for site-specific hardness using the hardness-dependent algorithm in Warne et al. (2018)
- #4 ANZG (2018). Chromium CrIII adopted for initial screening purposes.
- #5 ANZG (2018)
- #6 ANZG (2018). Higher species protection level adopted as recommended
- #7 Derived by NZ NIWA (2013) using ANZECC (2000) methodology. ANZECC (2000) value was withdrawn due to calculation errors.
- #8 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
- #9 CRWB (2019). Value for diesel (C8-C21) mixture.
- #10 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for s
- #11 ANZG (2018). Unknown species protection level
- #12 NHMRC (2008)
- #13 NHMRC (2011) Health. Multiplied by a factor of x10
- #14 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should I
- #15 USEPA Tap Water RSL (TR=1E-06; THQ=0.1) May 2024. Multiplied by a factor of x10
- #16 NHMRC (2011) Health. Converted from guideline for nitrate (as nitrate). Multiplied by a factor of x10
- #17 NHMRC (2011) Health. Converted from guideline for nitrite (as nitrite). Multiplied by a factor of x10
- #18 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10 #19 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10
- #20 NHMRC (2011) Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10
- #21 NHMRC (2011) Health. Value is for BaP but applies to TEQ. Multiplied by a factor of x10

Appendix A: OEMP Inspections

•	RECYCLING PL	AN – WETHERILL PARK	INS	PECTION	I CHECK	(LIST not by chance
Locat	ion:	reDirect – Wetherill Park	Da	ate:	01.08.2	3
Inspe	ection Completed By:	M.Stewart	Si	gnature:	M.P	Stewart
1. Ge	neral Management and m	nitigations 🗆 N/A		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suital	bly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
2. Tra	ffic mitigations \square N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free by employees and visite	from obstruction and maintained for uprs?	ıse	Daily	Υ	
2.3	Vehicles are entering a	nd leaving the site in forward direction	n.	Daily	Υ	
3. Air	quality, odour and dust r	nitigations \square N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and bo	t procedures are being implemented eing used?		Daily	Y	
3.2	Good dust management the building): Sweeper working and bo	t procedures are implemented (outsid	e	Daily	Υ	
3.3		n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage syster	n?	Monthly	N/A	
5.3	If materials identified in removed?	n stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra litter / debris?	ites have been inspected and clear of		Monthly	N/A	
5.5	1	eaters, first flush devices and litter and are operating correctly.		Monthly	N/A	
5.6	Site structires to be reg	ularly checked for erosion and scourir	ng	Monthly	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4	

Monthly

Quarterly

(Mar, Jun,

Sep, Dec)

annually (Jun, Dec)

Bi-

N/A

N/A

N/A

the build up of litter material

flush placement of grate upon refitment.

Treatment areas and structures will be regularly checked for

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

5.7

5.8

5.9

	TEAT WE ITERIEE I ARREITS			
5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Vei	min and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Daily	Υ	
	including on mobile plant		Ť	
9. No	including on mobile plant ise and vibration mitigations	Frequency	Y/N/NA	General Comments
9. No		As required		General Comments
9.1	se and vibration mitigations N/A	As	Y/N/NA	General Comments General Comments
9.1	se and vibration mitigations	As required	Y/N/NA	
9.1	Are defective plant parked up and not being used? aste management mitigations	As required Frequency	Y/N/NA Y Y/N/NA	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
Storage and Reference	Inspection Comple	ted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be comp the end of each day.	leteddaily, stored in the	site file and u	ploaded to Data	station before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

OPERATIONAL ENVIRONMENTAL MANGEMENT

	RECYCLING PL	AN – WETHERILL PARK I	INS	SPECTION	I CHECK	KLIST Sale by Choice not by Chance
Locat	tion:	reDirect – Wetherill Park	D	ate:	01.09.2	3
Inspe	ection Completed By:	M.Stewart	Si	gnature:	m.f	Stewart
1. Ge	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	oly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	iffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	Alll car spaces are free by employees and visito	from obstruction and maintained for u ors?	ise	Daily	Υ	
2.3	Vehicles are entering an	nd leaving the site in forward direction	١.	Daily	Υ	
3. Air	quality, odour and dust r	nitigations N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and be	procedures are being implemented eing used?		Daily	Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outside eing used?	е	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage system	n?	Monthly	N/A	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra	ites have been inspected and clear of		Monthly	N/A	
5.5		aters, first flush devices and litter and are operating correctly.		Monthly	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By: Date Issued: Version: Review Date: Author: Page Nul							
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

Monthly

Monthly

Quarterly

(Mar, Jun,

Sep, Dec)

annually

(Jun, Dec)

Bi-

N/A

N/A

N/A

N/A

the build up of litter material

flush placement of grate upon refitment.

5.6

5.7

5.8

5.9

Site structires to be regularly checked for erosion and scouring

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

Treatment areas and structures will be regularly checked for

	TEAT WETTERIEL FARR 11451 ECTION CITECREST SIMILOS							
5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments				
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A					
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A					
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A					
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A					
6. Vei	min and pest management mitigations N/A	Frequency	Y/N/NA	General Comments				
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ					
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ					
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y					
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments				
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ					
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ					
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments				
8.1	Fire extinguishers are positioned at readily accessible points,	Daily	Υ					
	including on mobile plant		Ť					
9. No	including on mobile plant ise and vibration mitigations	Frequency	Y/N/NA	General Comments				
9. No		As required		General Comments				
9.1	se and vibration mitigations N/A	As	Y/N/NA	General Comments General Comments				
9.1	se and vibration mitigations	As required	Y/N/NA					
9.1	Are defective plant parked up and not being used? aste management mitigations	As required Frequency	Y/N/NA Y Y/N/NA					

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4			

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
Storage and Reference	Inspection Comple	ted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be comp the end of each day.	leteddaily, stored in the	site file and u	ploaded to Data	station before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

PLAN – WETHERILL PARK INSPECTION CHECKLIST On the chance							
Locat	tion:	reDirect – Wetherill Park	D	ate:	03.10.23	3	
Inspection Completed By: M.Stewart Sig				gnature:	M.P	Stewart	
1. Ge	neral Management and m	nitigations N/A		Frequency	Y/N/NA	General Comments	
1.2	Employees and contract trained.	tors have been inducted and are s	uitably	As required	Υ		
1.3	Plant and equipment be the start of the day?	eing used is in good working condi	tion at	Daily	Y		
2. Tra	iffic mitigations \Box N	N/A		Frequency	Y/N/NA	General Comments	
2.1	Traffic is continually mo	onitored by Operations Coordinate	or?	Daily	Υ		
2.2	AllI car spaces are free from obstruction and maintained for use by employees and visitors?			Daily	Υ		
2.3	Vehicles are entering a	nd leaving the site in forward dire	ction.	Daily	Υ		
3. Air	quality, odour and dust r	mitigations \square N/A		Frequency	Y/N/NA	General Comments	
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?			Daily	Υ		
3.2	Good dust management procedures are implemented (outside the building): Sweeper working and being used?			Daily	Υ		
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check gener	al	Daily	Υ		
5. Sto	ormwater mitigations] N/A		Frequency	Y/N/NA	General Comments	
5.1	Are there any spills that	t have been left unattended?		Daily	N		
5.2	Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?			Monthly	N/A		
5.3	If materials identified in stormwater drains, has it been removed?			Monthly	N/A		
5.4	Inflow areas and pit gra	ates have been inspected and clea	r of	Monthly	N/A		
5.5		eaters, first flush devices and litter and are operating correctly.	•	Monthly	N/A		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4			

Monthly

Monthly

Quarterly

(Mar, Jun,

Sep, Dec)

annually (Jun, Dec)

Bi-

N/A

N/A

N/A

N/A

the build up of litter material

flush placement of grate upon refitment.

Site structires to be regularly checked for erosion and scouring

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

Treatment areas and structures will be regularly checked for

5.6

5.7

5.8

5.9

	TEAT WETTERIEL FARR 11451 ECTION CITECREST SIMILOS							
5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments				
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A					
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A					
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A					
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A					
6. Vei	min and pest management mitigations N/A	Frequency	Y/N/NA	General Comments				
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ					
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ					
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y					
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments				
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ					
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ					
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments				
8.1	Fire extinguishers are positioned at readily accessible points,	Daily	Υ					
	including on mobile plant		Ť					
9. No	including on mobile plant ise and vibration mitigations	Frequency	Y/N/NA	General Comments				
9. No		As required		General Comments				
9.1	se and vibration mitigations N/A	As	Y/N/NA	General Comments General Comments				
9.1	se and vibration mitigations	As required	Y/N/NA					
9.1	Are defective plant parked up and not being used? aste management mitigations	As required Frequency	Y/N/NA Y Y/N/NA					

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
Storage and Reference	Inspection Comple	ted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be comp the end of each day.	leteddaily, stored in the	site file and u	ploaded to Data	station before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

	RECYCLING PL	AN – WETHERILL PARK I	INS	SPECTION	I CHECK	KLIST Sale by Chance
Locat	tion:	reDirect – Wetherill Park	D	ate:	01.11.2	3
Inspe	ection Completed By:	M.Stewart	Si	ignature:	M.P	Stewart
1. Ge	neral Management and m	nitigations \square N/A		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	oly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	iffic mitigations	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free by employees and visito	from obstruction and maintained for u	se	Daily	Υ	
2.3	Vehicles are entering a	nd leaving the site in forward direction		Daily	Υ	
2 Air	anality adour and dust r	mitigations N/A		Frequency	Y/N/NA	General Comments
5. All	quality, odour and dust r	procedures are being implemented		Daily	T/IV/IVA	General Comments
3.1	(inside building): Sweeper working and be			Daily	Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outside eing used?	е	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	ormwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		is been inspected for any build up of and vegetation within drainage system	ո?	Monthly	N/A	
5.3	If materials identified in stormwater drains, has it been removed?			Monthly	N/A	
5.4	Inflow areas and pit grates have been inspected and clear of litter / debris?			Monthly	N/A	
5.5	Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.			Monthly	N/A	
5.6	Site structires to be regularly checked for erosion and scouring			Monthly	N/A	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for aterial		Monthly	N/A	
5.8	Remove grate and insp	ect internal walls and base. Remove ar	ıy	Quarterly		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

(Mar, Jun,

Sep, Dec)

annually

(Jun, Dec)

Bi-

N/A

N/A

5.9

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

flush placement of grate upon refitment.

	TEAT WE ITERIEE I ARREITS			
5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Vei	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Daily	Υ	
	including on mobile plant		Ť	
9. No	including on mobile plant ise and vibration mitigations	Frequency	Y/N/NA	General Comments
9. No		As required		General Comments
9.1	se and vibration mitigations N/A	As	Y/N/NA	General Comments General Comments
9.1	se and vibration mitigations	As required	Y/N/NA	
9.1	Are defective plant parked up and not being used? aste management mitigations	As required Frequency	Y/N/NA Y Y/N/NA	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
Storage and Reference	Inspection Comple	ted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be comp the end of each day.	leteddaily, stored in the	site file and u	ploaded to Data	station before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

•	RECYCLING PL	AN – WETHERILL PARK I	NS	SPECTION	I CHECK	(LIST oot by chance
Locat	ion:	reDirect – Wetherill Park	D	ate:	01.12.23	3
Inspe	ction Completed By:	M.Stewart	Si	gnature:	m.P	Stewart
1 Ga	neral Management and m	nitigations N/A		Frequency	Y/N/NA	General Comments
	-	ors have been inducted and are suitab	ılv	As		General Comments
1.2	trained.	ors have been madeled and are saltab	, ı y	required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	ffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	Alll car spaces are free f by employees and visito	from obstruction and maintained for uors?	se	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction		Daily	Υ	
3. Air	quality, odour and dust n			Frequency Daily	Y/N/NA	General Comments
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?				Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outside eing used?	9	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		s been inspected for any build up of and vegetation within drainage system	1?	Monthly	N/A	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra litter / debris?	tes have been inspected and clear of		Monthly	N/A	
5.5		aters, first flush devices and litter and are operating correctly.		Monthly	N/A	
5.6	Site structires to be reg	ularly checked for erosion and scouring	g	Monthly	N/A	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for aterial		Monthly	N/A	
5.8	collected sediment, deb	ect internal walls and base. Remove an oris, litter and vegetation. Inspect and lowing any removal of objects. Ensure	.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued: Version: R		Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

Bi-

annually

(Jun, Dec)

N/A

5.9

flush placement of grate upon refitment.

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

	TEAT WE ITERIEE I ARREITS			
5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Vei	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Daily	Υ	
	including on mobile plant		Ť	
9. No	including on mobile plant ise and vibration mitigations	Frequency	Y/N/NA	General Comments
9. No		As required		General Comments
9.1	se and vibration mitigations N/A	As	Y/N/NA	General Comments General Comments
9.1	se and vibration mitigations	As required	Y/N/NA	
9.1	Are defective plant parked up and not being used? aste management mitigations	As required Frequency	Y/N/NA Y Y/N/NA	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'								
Actions required	Action assigned to	Date assigned	Date to be completed	Signature				
torage and Reference	Inspection Comple	ted By		Date				
o be reviewed at Site Meeting.								
Vorkplace inspection checklists must be co	ompleteddaily, stored in the	site file and u	ploaded to Data	station hefo				

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

•	RECYCLING PL	AN – WETHERILL PARK I	NS	SPECTION	I CHECK	(LIST oot by chance
Locat	ion:	reDirect – Wetherill Park	D	ate:	08.01.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	m.P	Stewart
1. Ge	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	ly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	ffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free to	from obstruction and maintained for usors?	se	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction		Daily	Υ	
				_	v/10.10.0	
3. Air	quality, odour and dust r	-		Frequency	Y/N/NA	General Comments
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?			Daily	Υ	
3.2	Good dust management procedures are implemented (outside the building): Sweeper working and being used?				Υ	
3.3	Residual waste has beer waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage system	1?	Monthly	N/A	
5.3	If materials identified in removed?	n stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit grates have been inspected and clear of litter / debris?			Monthly	N/A	
5.5	Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.			Monthly	N/A	
5.6	6 Site structires to be regularly checked for erosion and scouring			Monthly	N/A	
5.7	Treatment areas and structures will be regularly checked for the build up of litter material			Monthly	N/A	
5.8	collected sediment, del	ect internal walls and base. Remove an oris, litter and vegetation. Inspect and lowing any removal of objects. Ensure e upon refitment.		Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

Bi-

annually (Jun, Dec) N/A

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

5.9

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments			
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A				
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A				
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A				
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A				
6. Ve	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments			
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ				
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ				
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y				
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments			
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ				
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ				
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments			
8. Fire	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Y/N/NA Y	General Comments			
8.1	Fire extinguishers are positioned at readily accessible points,			General Comments General Comments			
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ				
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations N/A	Prequency As	Y Y/N/NA				
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations Are defective plant parked up and not being used?	Frequency As required	Y	General Comments			
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y Y/N/NA Y Y/N/NA	General Comments			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
torage and Reference	Inspection Comple	ted By		Date			
o be reviewed at Site Meeting.							
Vorkplace inspection checklists must be co	ompleteddaily, stored in the	site file and u	ploaded to Data	station hefo			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

•	RECYCLING PL	AN – WETHERILL PARK I	NS	SPECTION	I CHECK	(LIST not by chance
Locat	tion:	reDirect – Wetherill Park	D	ate:	01.02.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	m.f	Stewart
1 Go	neral Management and m	nitigations N/A		Frequency	Y/N/NA	General Comments
	-	cors have been inducted and are suitab	lv	As		General Comments
1.2	trained.		required	Υ		
1.3 Plant and equipment being used is in good working condition at the start of the day?					Y	
2. Tra	iffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2 Alll car spaces are free from obstruction and maintained for use by employees and visitors?					Υ	
2.3	Vehicles are entering a	nd leaving the site in forward direction		Daily	Υ	
3. Air	quality, odour and dust r	nitigations N/A		Frequency	Y/N/NA	General Comments
Good dust management procedures are being implemented (inside building): Sweeper working and being used?			Daily	Υ		
3.2	Good dust management procedures are implemented (outside the building): Sweeper working and being used?				Υ	
3.3	Residual waste has beer waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		is been inspected for any build up of and vegetation within drainage system	າ?	Monthly	N/A	
5.3	If materials identified in removed?	n stormwater drains, has it been		Monthly	N/A	
Inflow areas and pit grates have been inspected and clear of litter / debris?			Monthly	N/A		
5.5	5.5 Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.			Monthly	N/A	
5.6	Site structires to be reg	ularly checked for erosion and scouring	g	Monthly	N/A	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for aterial		Monthly	N/A	
5.8	collected sediment, del	ect internal walls and base. Remove ar oris, litter and vegetation. Inspect and lowing any removal of objects. Ensure e upon refitment.		Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

Bi-

annually

(Jun, Dec)

N/A

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

5.9

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments			
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A				
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A				
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A				
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A				
6. Ve	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments			
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ				
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ				
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y				
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments			
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ				
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ				
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments			
8. Fire	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Y/N/NA Y	General Comments			
8.1	Fire extinguishers are positioned at readily accessible points,			General Comments General Comments			
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ				
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations N/A	Prequency As	Y Y/N/NA				
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations Are defective plant parked up and not being used?	Frequency As required	Y	General Comments			
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y Y/N/NA Y Y/N/NA	General Comments			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4	

Action Pla	n - to be transferred as a 'Ha	zard Report'		
Actions required	Action assigned to	Date assigned	Date to be completed	Signature
torage and Reference	Inspection Comple	ted By		Date
o be reviewed at Site Meeting.				
Vorkplace inspection checklists must be co	ompleteddaily, stored in the	site file and u	ploaded to Data	station hefo

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4	

•	RECYCLING PL	AN – WETHERILL PARK I	NS	SPECTION	I CHECK	(LIST not by chance
Locat	ion:	reDirect – Wetherill Park	D	ate:	20.02.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	m.P	Stewart
1. Gei	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	ly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	ffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	nitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free f	rom obstruction and maintained for uors?	se	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction		Daily	Υ	
3. Air	quality, odour and dust r			Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and be	procedures are being implemented eing used?		Daily	Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outside eing used?	9	Daily	Υ	
3.3		n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		s been inspected for any build up of and vegetation within drainage system	ո?	Monthly	N/A	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra litter / debris?	tes have been inspected and clear of		Monthly	N/A	
5.5	1	aters, first flush devices and litter and are operating correctly.		Monthly	N/A	
5.6	Site structires to be reg	ularly checked for erosion and scouring	g	Monthly	N/A	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for iterial		Monthly	N/A	
5.8	collected sediment, det	ect internal walls and base. Remove an oris, litter and vegetation. Inspect and lowing any removal of objects. Ensure e upon refitment.		Quarterly (Mar, Jun, Sep, Dec)	N/A	
5.9	Have all drainage struct	ures been inspected noting any		Bi-		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4	

N/A

annually (Jun, Dec)

dilapidation, if so have repairs been carried out?

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ve	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8. Fire	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Y/N/NA Y	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,			General Comments General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ	
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations N/A	Prequency As	Y Y/N/NA	
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations Are defective plant parked up and not being used?	Frequency As required	Y	General Comments
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y Y/N/NA Y Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4	

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4	

Action Pla	n - to be transferred as a 'Ha	zard Report'		
Actions required	Action assigned to	Date assigned	Date to be completed	Signature
torage and Reference	Inspection Comple	ted By		Date
o be reviewed at Site Meeting.				
Vorkplace inspection checklists must be co	ompleteddaily, stored in the	site file and u	ploaded to Data	station hefo

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

OPERATIONAL ENVIRONMENTAL MANGEMENT

•	RECYCLING PL	AN – WETHERILL PARK	INS	SPECTION	I CHEC	(LIST oot by chance
Location: rel		reDirect – Wetherill Park Da		ate:	01.03.24	
Inspe	M.Stewart	Si	gnature:	M.P	Stewart	
1. Ge	neral Management and m			Frequency	Y/N/NA	General Comments
1.2	Employees and contractors have been inducted and are suitably trained.			As required	Υ	
1.3	Plant and equipment being used is in good working condition at the start of the day?				Y	
2. Tra	iffic mitigations \Box N	N/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free from obstruction and maintained for use by employees and visitors?			Daily	Υ	
2.3	Vehicles are entering and leaving the site in forward direction.			Daily	Υ	
3. Air	quality, odour and dust r	nitigations \square N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?			Daily	Υ	
3.2	Good dust management procedures are implemented (outside the building): Sweeper working and being used?			Daily	Υ	
3.3	Residual waste has been transported offsite (check general waste bin capacity)?				Υ	
5. Sto	ormwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2	Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?			Monthly	N/A	
5.3	If materials identified in stormwater drains, has it been removed?			Monthly	N/A	
5.4	Inflow areas and pit grates have been inspected and clear of litter / debris?			Monthly	N/A	
5.5	Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.			Monthly	N/A	
5.6	Site structires to be regularly checked for erosion and scouring			Monthly	N/A	
5.7	Treatment areas and structures will be regularly checked for the build up of litter material			Monthly	N/A	
5.8	Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and			Quarterly (Mar, Jun,	NI/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

N/A

N/A

Sep, Dec)

annually

(Jun, Dec)

Bi-

5.9

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

flush placement of grate upon refitment.

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ve	rmin and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pollution management mitigations			Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
a =:				
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8. Fire	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Y/N/NA Y	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,			General Comments General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ	
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations N/A	Prequency As	Y Y/N/NA	
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations N/A Are defective plant parked up and not being used?	Frequency As required	Y	General Comments
9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y Y/N/NA Y Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	N/A	
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	N/A	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4			

Action Plan - to be transferred as a 'Hazard Report'						
Actions required	Action assigned to	Date assigned	Date to be completed	Signature		
			<u> </u>			
Storage and Reference	Inspection Comple	eted By		Date		
To be reviewed at Site Meeting.						
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4			

	RECYCLING PL	AN – WETHERILL PARK	INS	SPECTION	I CHEC	KLIST ont by chance
Locat	ion:	reDirect – Wetherill Park	D	ate:	29.03.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	M.F	Stewart
1. Ge	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	As required	Υ		
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
	,					
2. Tra	ffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	Alll car spaces are free to by employees and visitor	from obstruction and maintained for uprs?	ise	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction	۱.	Daily	Υ	
3. Air quality, odour and dust mitigations N/A				Frequency	Y/N/NA	General Comments
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?				Υ	
3.2	Good dust management the building): Sweeper working and be	t procedures are implemented (outside eing used?	е	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage systen	n?	Monthly	Υ	
5.3	3 If materials identified in stormwater drains, has it been removed?			Monthly	Y	
5.4	Inflow areas and pit gra litter / debris?	Monthly	Y			
5.5		eaters, first flush devices and litter and are operating correctly.		Monthly	Y	
5.6	Site structires to be reg	ularly checked for erosion and scourin	g	Monthly	Y	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for aterial		Monthly	Y	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4			

Quarterly

(Mar, Jun,

Sep, Dec)

annually

(Jun, Dec)

Bi-

Y Dec

Y Dec

2022

2022

Lift grate, brush out lip for grate

and down walls remove debris

Inspected no action required

replace grate

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

flush placement of grate upon refitment.

5.8

5.9

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	Y Dec 2022	Check Basket – no litter
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	Y Dec 2022	Empty tank inspect no sign of pests
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	Y Dec 2022	No repairs required
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	Y Dec 2022	Checked no action required
6. Ver	rmin and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
-		Daily		
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ	
		Frequency	Y Y/N/NA	General Comments
9. Noi	including on mobile plant			General Comments
9. Noi	including on mobile plant ise and vibration mitigations	Frequency As	Y/N/NA	General Comments General Comments
9. Noi 9.1 10. W	including on mobile plant ise and vibration mitigations N/A Are defective plant parked up and not being used?	Frequency As required	Y/N/NA	
9.1	including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y/N/NA Y Y/N/NA	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4			

11. Flooding mitigations N/A			Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	Y Dec 2022	Fully stocked and in good condition
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	Y Dec 2022	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	Y Dec 2022	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4			

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
Chause and Defen		to d D		Dete			
Storage and Reference	Inspection Comple	ted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be completed the end of each day.	ddaily, stored in the	site file and u	oloaded to Dat	astation before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

•	RECYCLING PL	AN – WETHERILL PARK	INS	SPECTION	I CHECK	(LIST not by chance
Locat	ion:	reDirect – Wetherill Park	D	ate:	30.04.24	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	M.P	Stewart
1. Gei	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suita	bly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
2. Tra	ffic mitigations	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	All car spaces are free from obstruction and maintained for use			Daily	Υ	
2.3	Vehicles are entering a	nd leaving the site in forward directio	n.	Daily	Υ	
3. Air	quality, odour and dust r	mitigations \square N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and be	t procedures are being implemented eing used?		Daily	Υ	
3.2	Good dust management the building): Sweeper working and bo	t procedures are implemented (outsion eing used?	le	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills tha	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage syste	m?	Monthly	Υ	
5.3	If materials identified in removed?	n stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra litter / debris?	ites have been inspected and clear of		Monthly	Y	
5.5		eaters, first flush devices and litter and are operating correctly.		Monthly	Y	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

Monthly

Monthly

Quarterly

(Mar, Jun,

Sep, Dec)

annually (Jun, Dec)

Bi-

Y

Y

Y

N/A

the build up of litter material

flush placement of grate upon refitment.

Site structires to be regularly checked for erosion and scouring

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

Treatment areas and structures will be regularly checked for

5.6

5.7

5.8

5.9

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ver	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As	Υ	
		required		
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8. Fire	e management mitigations N/A Fire extinguishers are positioned at readily accessible points, including on mobile plant		Y/N/NA Y	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Frequency		General Comments General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Υ	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations N/A	Frequency Daily Frequency As	Y Y/N/NA	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations Are defective plant parked up and not being used?	Frequency Daily Frequency As required	Y/N/NA N/A	General Comments
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations	Frequency As required Frequency	Y/N/NA N/A Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)		
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly		

12. Bi	odiversity 🗆 N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
			<u> </u>				
Storage and Reference	Inspection Comple	eted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

	RECYCLING PL	AN - WETHERILL PARK	IINS	PECHON	CHECK	(LIST
Locat	ion:	reDirect – Wetherill Park	Da	ate:	30.11.2	2
Inspe	ection Completed By:	M.Stewart	Si	gnature:	M.P	Stewart
1. Gei	neral Management and m	nitigations □ N/A		Frequency	Y/N/NA	General Comments
1.2	-	ors have been inducted and are suitab	oly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
2. Tra	ffic mitigations \square N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	Alll car spaces are free f	rom obstruction and maintained for uors?	ise	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction	١.	Daily	Υ	
3. Air	quality, odour and dust n	nitigations \square N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and be	procedures are being implemented		Daily	Υ	
3.2	Good dust management procedures are implemented (outside			Daily	Υ	
3.3	Residual waste has been transported offsite (check general			Daily	Υ	
5. Sto	rmwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	have been left unattended?		Daily	N	
5.2		s been inspected for any build up of and vegetation within drainage systen	n?	Monthly	Υ	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit gra litter / debris?	tes have been inspected and clear of		Monthly	Y	
5.5	1	aters, first flush devices and litter and are operating correctly.		Monthly	Y	
5.6	Site structires to be reg	ularly checked for erosion and scourin	g	Monthly	Y	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for Iterial		Monthly	Y	
5.8				Quarterly (Mar, Jun, Sep, Dec)	Y	
5.9	_	ures been inspected noting any repairs been carried out?		Bi- annually (Jun, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued: Version: F		Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ver	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As	Υ	
		required		
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8. Fire	e management mitigations N/A Fire extinguishers are positioned at readily accessible points, including on mobile plant		Y/N/NA Y	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Frequency		General Comments General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Υ	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations N/A	Frequency Daily Frequency As	Y Y/N/NA	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations Are defective plant parked up and not being used?	Frequency Daily Frequency As required	Y/N/NA N/A	General Comments
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations	Frequency As required Frequency	Y/N/NA N/A Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)		
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly		

12. Bi	odiversity 🗆 N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be transferred as a 'Hazard Report'							
Actions required	Action assigned to	Date assigned	Date to be completed	Signature			
			<u> </u>				
Storage and Reference	Inspection Comple	eted By		Date			
To be reviewed at Site Meeting.							
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

	RECYCLING PL	AN – WETHERILL PARK I	NS	PECTION	I CHEC	(LIST not by chance
Locat	tion:	reDirect – Wetherill Park	D	ate:	28.06.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	MI	Stewart
1. Ge	neral Management and m	nitigations N/A		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	ly	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition a	at	Daily	Y	
2. Tra	iffic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free by employees and visito	from obstruction and maintained for u ors?	se	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction		Daily	Υ	
3. Air quality, odour and dust mitigations \square N/A				Frequency	Y/N/NA	General Comments
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?				Υ	
3.2	Good dust management the building): Sweeper working and bo	t procedures are implemented (outside eing used?	9	Daily	Υ	
3.3	Residual waste has beer waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	ormwater mitigations] N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		ns been inspected for any build up of and vegetation within drainage system	ո?	Monthly	Υ	
5.3	If materials identified in stormwater drains, has it been removed?			Monthly	N/A	
5.4	Inflow areas and pit gra	Monthly	Y			
5.5		eaters, first flush devices and litter and are operating correctly.		Monthly	Y	
5.6	Site structires to be reg	ularly checked for erosion and scouring	g	Monthly	Y	
5.7	Treatment areas and st	ructures will be regularly checked for		Monthly	V	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4			

Quarterly

(Mar, Jun,

Sep, Dec)

annually

(Jun, Dec)

Bi-

Y

N/A

the build up of litter material

flush placement of grate upon refitment.

Remove grate and inspect internal walls and base. Remove any

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

5.8

5.9

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ver	min and pest management mitigations \[\subseteq N/A \]	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As	Υ	
		required		
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8. Fire	e management mitigations N/A Fire extinguishers are positioned at readily accessible points, including on mobile plant		Y/N/NA Y	General Comments
8.1	Fire extinguishers are positioned at readily accessible points,	Frequency		General Comments General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Frequency Daily	Υ	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations N/A	Frequency Daily Frequency As	Y Y/N/NA	
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations Are defective plant parked up and not being used?	Frequency Daily Frequency As required	Y/N/NA N/A	General Comments
9. Noi 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant se and vibration mitigations	Frequency As required Frequency	Y/N/NA N/A Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)		
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly		

12. Bi	odiversity 🗆 N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4	

Action Plan - to be transferred as a 'Hazard Report'						
Actions required	Action assigned to	Date assigned	Date to be completed	Signature		
			<u> </u>			
Storage and Reference	Inspection Comple	ted By		Date		
To be reviewed at Site Meeting.						
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

	RECYCLING	AN – WETHERILL PARK	INS	SPECTION	CHECK	(LIST not by chance
Loca	tion:	reDirect – Wetherill Park	D	ate:	28.06.2	4
Inspe	Inspection Completed By: M.Stewart		Si	ignature:	M.P. Stewart	
1. Ge	neral Management and m	nitigations \square N/A		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suita	ably	As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	n at	Daily	Y	
2. Tra	affic mitigations \Box N	I/A		Frequency	Y/N/NA	General Comments
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	AllI car spaces are free to	from obstruction and maintained for ors?	use	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction	n.	Daily	Υ	
3. Air	quality, odour and dust r	nitigations \square N/A		Frequency	Y/N/NA	General Comments
3.1	Good dust management (inside building): Sweeper working and be	procedures are being implemented eing used?		Daily	Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outsi	de	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	ormwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		s been inspected for any build up of and vegetation within drainage syste		Monthly	Υ	

5. Sto	rmwater mitigations $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Frequency	Y/N/NA	General Comments
5.1	Are there any spills that have been left unattended?	Daily	N	
5.2	Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?	Monthly	Υ	
5.3	If materials identified in stormwater drains, has it been removed?	Monthly	Y	
5.4	Inflow areas and pit grates have been inspected and clear of litter / debris?	Monthly	Y	
5.5	Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.	Monthly	Y	
5.6	Site structires to be regularly checked for erosion and scouring	Monthly	Y	
5.7	Treatment areas and structures will be regularly checked for the build up of litter material	Monthly	Y	
5.8	Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment.	Quarterly (Mar, Jun, Sep, Dec)	Y Dec 2022	Lift grate,brush out lip for grate and down walls remove debris replace grate
5.9	Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?	Bi- annually (Jun, Dec)	Y Dec 2022	Inspected no action required

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4	

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	Y Dec 2022	Check Basket – no litter
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	Y Dec 2022	Empty tank inspect no sign of pests
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	Y Dec 2022	No repairs required
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	Y Dec 2022	Checked no action required
6. Ver	rmin and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
-		Daily		
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Υ	
		Frequency	Y Y/N/NA	General Comments
9. Noi	including on mobile plant			General Comments
9. Noi	including on mobile plant ise and vibration mitigations	Frequency As	Y/N/NA	General Comments General Comments
9. Noi 9.1 10. W	including on mobile plant ise and vibration mitigations N/A Are defective plant parked up and not being used?	Frequency As required	Y/N/NA	
9.1	including on mobile plant ise and vibration mitigations	Frequency As required Frequency	Y/N/NA Y Y/N/NA	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC						
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:	
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4	

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	Y Dec 2022	Fully stocked and in good condition
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly	Y Dec 2022	

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	Y Dec 2022	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4			

Action Plan - to be transferred as a 'Hazard Report'					
Actions required	Action assigned to	Date assigned	Date to be completed	Signature	
			<u> </u>		
Storage and Reference	Inspection Comple	ted By		Date	
To be reviewed at Site Meeting.					
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4			

	RECYCLING PL	AN – WETHERILL PARK	INS	SPECTION	I CHECK	(LIST not by chance
Locat	tion:	reDirect – Wetherill Park	D	ate:	30.07.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	M.P	Stewart
1. Ge	neral Management and m	nitigations		Frequency	Y/N/NA	General Comments
Employees and contractors have been inducted and are suitably As				As required	Υ	
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
				_		
2. Tra	iffic mitigations \square N	I/A		Frequency	Y/N/NA	General Comments
2.1 Traffic is continually monitored by Operations Coordinator?				Daily	Υ	
2.2	Alll car spaces are free to by employees and visito	from obstruction and maintained for uprs?	ıse	Daily	Υ	
2.3	Vehicles are entering ar	nd leaving the site in forward direction	٦.	Daily	Υ	
		_				
			Frequency	Y/N/NA	General Comments	
3.1	Good dust management procedures are being implemented (inside building): Sweeper working and being used?			Daily	Υ	
3.2	Good dust management the building): Sweeper working and be	procedures are implemented (outside ingused?	е	Daily	Υ	
3.3	Residual waste has been waste bin capacity)?	transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		is been inspected for any build up of and vegetation within drainage syster	n?	Monthly	Υ	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	N/A	
5.4	Inflow areas and pit grates have been inspected and clear of litter / debris?			Monthly	Y	
5.5	screens are unblocked and are operating correctly.			Monthly	Y	
5.6	Site structires to be reg	ularly checked for erosion and scourir	ng	Monthly	Y	
5.7	Treatment areas and st the build up of litter ma	ructures will be regularly checked for aterial		Monthly	Y	
5.8	Remove grate and inspe	ect internal walls and base. Remove a	ny	Quarterly		

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4		

(Mar, Jun,

Sep, Dec)

annually

(Jun, Dec)

Bi-

Y

N/A

5.9

collected sediment, debris, litter and vegetation. Inspect and

ensure grate is clear following any removal of objects. Ensure

Have all drainage structures been inspected noting any

dilapidation, if so have repairs been carried out?

flush placement of grate upon refitment.

5. Sto	rmwater mitigations	Frequency	Y/N/NA	General Comments
5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	N/A	
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	N/A	
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	N/A	
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	N/A	
6. Ve	rmin and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations □ N/A	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management	As		
- · -	plan been provided in toolbox?	required	Υ	
	plan been provided in toolbox? e management mitigations N/A		Y Y/N/NA	General Comments
	· · ·	required		General Comments
8. Fire	e management mitigations	required Frequency	Y/N/NA	General Comments General Comments
8. Fire	e management mitigations	Frequency Daily	Y/N/NA Y	
8. Fire 8.1 9. No	e management mitigations	Frequency Daily Frequency As	Y/N/NA Y Y/N/NA	
8. Fire 8.1 9. No	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency Daily Frequency As required	Y/N/NA Y Y/N/NA N/A	General Comments
8. Fire 8.1 9. No 9.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant ise and vibration mitigations	Frequency Daily Frequency As required Frequency	Y/N/NA Y Y/N/NA N/A Y/N/NA	General Comments

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

11. Flo	ooding mitigations	Frequency	Y/N/NA	General Comments
11.1	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)		
11.2	Yearly (at minimum) evacuation drills will be implemented as part of ongoing training onsite.	Yearly		

12. Bi	odiversity N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	N/A	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4			

Action Plan - to be transferred as a 'Hazard Report'					
Actions required	Action assigned to	Date assigned	Date to be completed	Signature	
Storage and Reference	Inspection Comple	ted By		Date	
To be reviewed at Site Meeting.					
Workplace inspection checklists must be co	ompleteddaily, stored in the	site file and u	ploaded to Data	station befor	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4			

Appendix B: Field Sheets

Monitoring Round: S20102_06 Feb 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW2

Arrival Date/Time 06/02/2023 09:54AM Departure Date/Time 08/02/2023 09:04AM

Executed By Bec Chapple

Weather Sunny

Comments

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:04 PM

Groundwater Data

Well MW2 Date/Time 06/02/2023 09:54AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 2.96
 Well Depth (mbTOC)
 7.59

Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW2 Date/Time 08/02/2023 08:31AM

Well Depth (mbTOC)

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.957

Product Depth

(mbTOC)

Comments & Product

Description
Equipment ID

Equipment ib

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 08/02/2023 08:43AM

Well MW2
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW2

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 3.122

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
08:42AM	21545	6.33	154.4	1.35	20.8
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_06 Feb 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW4

Arrival Date/Time 06/02/2023 10:07AM Departure Date/Time 08/02/2023 10:44AM

Executed By Bec Chapple

Weather Sunny

Comments

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:05 PM

Groundwater Data

Well MW4 Date/Time 06/02/2023 10:08AM

Measurement MethodDipDryNoWater Depth (mbTOC)2.205Well Depth (mbTOC)6.99

Water Depth (mbTOC) 2.205 Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW4 Date/Time 08/02/2023 10:24AM

Well Depth (mbTOC)

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.224

Product Depth

(mbTOC)

Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 08/02/2023 10:38AM

Well MW4
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW4

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 2.554

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
10:37AM	17881	6.54	69	0	22.7
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_06 Feb 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW6

Arrival Date/Time 06/02/2023 10:19AM Departure Date/Time 08/02/2023 11:09AM

Executed By Bec Chapple

Weather Sunny

Comments Stick up well

Well Information

Gatic Type Stick up

Key Type None

Well Condition Average

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:05 PM

Groundwater Data

Well MW6 Date/Time 06/02/2023 10:19AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 4.444
 Well Depth (mbTOC)
 7.19

Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW6 Date/Time 08/02/2023 10:52AM

Measurement Method Dip Dry No

Water Depth (mbTOC) 4.444 Well Depth (mbTOC)

Product Depth

(mbTOC)
Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 08/02/2023 10:53AM

Well MW6

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW6

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 4.446

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
10:53AM	2323	7.19	89.8	0.1	22.7
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_06 Feb 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW3

Arrival Date/Time 06/02/2023 10:30AM Departure Date/Time 08/02/2023 10:10AM

Executed By Bec Chapple

Weather Sunny

Comments

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:06 PM

Groundwater Data

Well MW3 Date/Time 06/02/2023 10:31AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 2.971
 Well Depth (mbTOC)
 8.08

Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW3 Date/Time 08/02/2023 09:37AM

Well Depth (mbTOC)

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.945

Product Depth

(mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 08/02/2023 09:44AM

Well MW3

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW3

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description)colourlessSample Odour (Description)no odourSample Sheen (Description)no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1) QC101

QA Sample ID (2) QC201

QA Sample ID (3) QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 3.3

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
09:45AM	29765	5.78	65.7	0.79	23.6
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_06 Feb 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW1

Arrival Date/Time 06/02/2023 10:37AM Departure Date/Time 08/02/2023 09:26AM

Executed By Bec Chapple

Weather Sunny

Comments No x-cap in place.

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:06 PM

Groundwater Data

Well MW1 Date/Time 06/02/2023 10:41AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 2.145
 Well Depth (mbTOC)
 6.61

Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW1 Date/Time 08/02/2023 09:05AM

Well Depth (mbTOC)

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.111

Product Depth

(mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 08/02/2023 09:06AM

Well MW1

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW1

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) orange
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 2.163

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
09:06AM	22382	6.47	28.3	2.02	22.4
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_10 Feb 2023 _1

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW2

Arrival Date/Time 10/02/2023 08:16AM Departure Date/Time 10/02/2023 08:17AM

Executed By Bec Chapple

Weather Sunny

Comments

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:07 PM

Sample Data

Sampled Date/Time 10/02/2023 08:17AM

Field ID SW2

Sample Depth From

(m)

Sample Depth To

Sample Type Normal

Sample Comments

Matrix Type Water

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Field Chemistry

Temp 22.2 oC (-)

DO 3.85 mg/L (-)

EC 365.7 uS/cm (-)

pH 7.04 - (-)

Redox 215.3 mV (-)

Monitoring Round: S20102_10 Feb 2023 _1

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW1

Arrival Date/Time 10/02/2023 08:40AM Departure Date/Time 10/02/2023 08:42AM

Executed By Bec Chapple

Weather Sunny

Comments

Authorisation

Checked By Hayley Yellowlees

Date Checked 09 Aug 2024 03:07 PM

Sample Data

Sampled Date/Time 10/02/2023 08:42AM

Field ID SW1

Sample Depth From

(m)

Sample Depth To

Sample Type Normal

Sample Comments

Matrix Type Water

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Field Chemistry

Temp 21.8 oC (-)

DO 4.23 mg/L (-)

EC 196.2 uS/cm (-)

pH 7.54 - (-)

Redox 219.6 mV (-)

Monitoring Round: \$20102_02 Aug 2023

Departure Date/Time 14/08/2023 04:01PM

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW6

Arrival Date/Time 02/08/2023 10:33AM

Executed By Hayley Yellowlees

Weather Sunny

Comments

Well Information

Gatic Type monument

Key Type None
Well Condition Good

Authorisation

Checked By Bec Chapple

Date Checked 15 Aug 2023 02:15 PM

Groundwater Data

Well MW6 Date/Time 02/08/2023 10:34AM

Measurement MethodDipDryNoWater Depth (mbTOC)4.748Well Depth (mbTOC)7.17

Water Depth (mbTOC) 4.748 Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 14/08/2023 03:42PM

Well MW6

Matrix Type Water

Equipment ID

Sample Comments Pale yellow, slightly sulphurous, yellow/orange sediment in bottom of hydrasleeve.

Field ID (Primary) MW6

Purge Method

Sample Method Snap Sampler

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) yellow

Sample Odour (Description) sulphurous odour

Sample Sheen (Description) no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 4.825

Field Chemistry

	Standing Water Level	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	m bTOC	uS/cm	pH Units	mV	mg/L	° C
03:41PM	4.765	1362	7.22	-6.4	0.81	16.8
Stabilisation *		±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_02 Aug 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW3

Arrival Date/Time 02/08/2023 11:03AM Departure Date/Time 14/08/2023 04:46PM

Executed By Hayley Yellowlees

Weather Sunny

Comments

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 15 Aug 2023 02:21 PM

Groundwater Data

Well MW3 Date/Time 02/08/2023 11:04AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 3.599
 Well Depth (mbTOC)
 8.07

Product Depth

(mbTOC)

Comments & Product

Description

Hydrasleeves installed x2

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 14/08/2023 04:13PM

Well MW3

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW3

Purge Method

Sample Method

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 3.985

Field Chemistry

	Standing Water Level	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	m bTOC	uS/cm	pH Units	mV	mg/L	° C
04:13PM	3.425	24992	5.91	62.6	0.92	15.9
Stabilisation *		±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_02 Aug 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW1

Arrival Date/Time 02/08/2023 11:26AM Departure Date/Time 14/08/2023 01:34PM

Executed By Hayley Yellowlees

Weather Overcast

Comments No x-cap. PVC too close to the gatic.

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 15 Aug 2023 02:23 PM

Groundwater Data

Well MW1 Date/Time 02/08/2023 11:28AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 2.634
 Well Depth (mbTOC)
 6.61

Product Depth (mbTOC)

Comments & Product

Description

Hydra sleeve installed

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 14/08/2023 01:17PM

Well MW1

Matrix Type Water

Equipment ID

Sample Comments Orange sediment at bottom of hydrasleeve

Field ID (Primary) MW01

Purge Method

Sample Method Snap Sampler

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless, orange

Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Non-turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 2.575

Field Chemistry

	Standing Water Level	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	m bTOC	uS/cm	pH Units	mV	mg/L	° C
01:17PM	2.575	19738	6.34	116.4	6.33	17
Stabilisation *		±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_02 Aug 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW2

Arrival Date/Time 02/08/2023 11:43AM Departure Date/Time 14/08/2023 02:38PM

Executed By Hayley Yellowlees

Weather Overcast

Comments Ants nest in top of well

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 15 Aug 2023 02:36 PM

Groundwater Data

Well MW2 Date/Time 02/08/2023 11:43AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 3.19
 Well Depth (mbTOC)
 7.57

Water Depth (mbTOC) 3.19 Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 14/08/2023 02:22PM

Well MW2
Matrix Type Water

Equipment ID

Sample Comments Orange sediment in bottom of hydrasleeve

Field ID (Primary) MW2

Purge Method

Sample Method Snap Sampler

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 3.484

Field Chemistry

	Standing Water Level	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	m bTOC	uS/cm	pH Units	mV	mg/L	° C
02:22PM	3.155	17006	6.44	129	1.2	17
Stabilisation *		±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_02 Aug 2023

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW4

Arrival Date/Time 02/08/2023 11:59AM Departure Date/Time 14/08/2023 03:36PM

Executed By Hayley Yellowlees

Weather Overcast

Comments

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 15 Aug 2023 02:36 PM

Groundwater Data

Well MW4 Date/Time 02/08/2023 12:01PM

Measurement MethodDipDryNoWater Depth (mbTOC)2.565Well Depth (mbTOC)6.98

Water Depth (mbTOC) 2.565 Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sampled Date/Time 14/08/2023 03:26PM

Well MW4
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW4

Purge Method

Sample Method Snap Sampler

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Non-turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m) 2.925

Field Chemistry

	Standing Water Level	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	m bTOC	uS/cm	pH Units	mV	mg/L	°C
03:25PM	2.62	7133	6.55	18.7	1.7	17.1
Stabilisation *		±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW6

Arrival Date/Time 07/02/2024 11:21AM Departure Date/Time 09/02/2024 11:26AM

Executed By Rowan Faint

Weather Sunny

Comments Stick up. Hydrasleeve installed

Well Information

Gatic Type Stick up

Key Type None

Well Condition Good

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:19 PM

Groundwater Data

Well MW6 Date/Time 07/02/2024 11:22AM

Measurement MethodDipDryNoWater Depth (mbTOC)4.369Well Depth (mbTOC)7.16

Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW6 Date/Time 07/02/2024 11:30AM

Measurement Method Dip Dry No

Water Depth (mbTOC) 4.36 Well Depth (mbTOC)

Product Depth

(mbTOC)

Comments & Product

Description

After hydrasleeve deployment

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW6 Date/Time 09/02/2024 11:08AM

Measurement Method Dip Dry Well Depth (mbTOC) No

Water Depth (mbTOC) 4.357

Product Depth (mbTOC)

Comments & Product

Description

Before hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Well MW6

09/02/2024 11:09AM Date/Time

Measurement Method Dip Dry

Well Depth (mbTOC)

Product Depth

(mbTOC)

Comments & Product Description

Water Depth (mbTOC)

After hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Sampled Date/Time 09/02/2024 11:25AM

Well MW6

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW6

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description)colourlessSample Odour (Description)no odourSample Sheen (Description)no sheenSample Turbidity (Description)Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
11:25AM	2204	7.41	56.6	5.3	22.5
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW4

Arrival Date/Time 07/02/2024 11:55AM Departure Date/Time 14/02/2024 02:45PM

Executed By Rowan Faint

Weather Sunny

Comments Well head flooded on arrival. Hydrasleeve installed. First hydrasleeve got lost down the well. Install

new one on 9/2/24

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:21 PM

Groundwater Data

Well MW4 Date/Time 07/02/2024 11:57AM

Well Depth (mbTOC)

6.98

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.65 Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW4 Date/Time 07/02/2024 12:06PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.635 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description

After hydrasleeve deployment

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW4 Date/Time 09/02/2024 02:34PM

Measurement Method Dip

Dry No

Well Depth (mbTOC)

Water Depth (mbTOC) 2.49

Product Depth

(mbTOC)
Comments & Product

After installing replacement

Description hydrasleeve

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well

Well Head PID (PPM)

Product Confirmed by Bailer

MW4

No

Date/Time 09/02/2024 11:43AM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.53 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description

Before hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well

Well Head PID (PPM)

Product Confirmed by Bailer

MW4

Date/Time

14/02/2024 02:17PM

Measurement Method Dip Dry No

No

Water Depth (mbTOC) 2.77 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description

Post hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Sampled Date/Time 14/02/2024 02:34PM

Well MW4
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW4

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description)colourlessSample Odour (Description)no odourSample Sheen (Description)no sheenSample Turbidity (Description)Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
02:35PM	19817	6.66	-11.2	3.8	29.6
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW1

Arrival Date/Time 07/02/2024 12:28PM Departure Date/Time 09/02/2024 10:52AM

Executed By Rowan Faint

Weather Sunny

Comments No well cap. Hydrasleeve installed

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:21 PM

Groundwater Data

Well MW1 Date/Time 07/02/2024 12:32PM

Well Depth (mbTOC)

6.605

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.25 Product Depth

(mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW1 Date/Time 07/02/2024 12:38PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.25 Well Depth (mbTOC)

Product Depth

(mbTOC)

Comments & Product

Description

After hydrasleeve deployment

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW1 Date/Time 09/02/2024 10:30AM

Measurement Method Dip Dry

Well Depth (mbTOC)

No

Water Depth (mbTOC) 2.235

Product Depth

Comments & Product Description

Before hydrasleeve sampling

Equipment ID

(mbTOC)

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Well MW1 Date/Time

Dry

09/02/2024 10:40AM

Measurement Method Dip Water Depth (mbTOC) 2.39

Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

After hydrasleeve sampling

Description **Equipment ID**

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Sampled Date/Time 09/02/2024 10:50AM

Well MW1

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW1

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description) no sheen

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
10:50AM	25870	6.66	38.1	3.07	22.3
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW3

Arrival Date/Time 07/02/2024 01:03PM Departure Date/Time 09/02/2024 10:17AM

Executed By Rowan Faint

Weather Sunny

Comments Two hydrasleeves installed

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:22 PM

Groundwater Data

Well MW3 Date/Time 07/02/2024 01:03PM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 3.18
 Well Depth (mbTOC)
 8.05

Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW3 Date/Time 07/02/2024 01:13PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 3.15 Well Depth (mbTOC)

Product Depth

(mbTOC)

Comments & Product

Description

After hydrasleeve deployment

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW3 Date/Time 09/02/2024 09:24AM

Measurement Method Dip Dry No

Well Depth (mbTOC)

Water Depth (mbTOC) 3.175

Product Depth (mbTOC)

Comments & Product

Description

Before hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

09/02/2024 09:35AM Well MW3 Date/Time

Measurement Method Dip Dry

Water Depth (mbTOC) 3.78 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

After hydrasleeve sampling Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Page 48 of 81

Sampled Date/Time 09/02/2024 09:37AM

Well MW3

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW3

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1) QC103

QA Sample ID (2) QC203

QA Sample ID (3) QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
09:36AM	34645	6.5	1.5	2.11	23.5
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW1

Arrival Date/Time 07/02/2024 01:30PM Departure Date/Time 07/02/2024 01:43PM

Executed By Rowan Faint

Weather Sunny

Comments

Well Information

Gatic Type

Key Type

Well Condition

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:23 PM

Sampled Date/Time 07/02/2024 01:43PM

Well

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) SW1

Purge Method

Sample Method Grab

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
01:42PM	574	7.51	101.6	4.67	23.9
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: \$20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW2

Arrival Date/Time 07/02/2024 02:28PM Departure Date/Time 07/02/2024 02:36PM

Executed By Rowan Faint

Weather Sunny

Comments

Well Information

Gatic Type

Key Type

Well Condition

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:24 PM

Sampled Date/Time 07/02/2024 02:29PM

Well

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) SW2

Purge Method

Sample Method Grab

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
02:29PM	656	7.7	81	4.19	25
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_07 Feb 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW2

Arrival Date/Time 07/02/2024 02:37PM Departure Date/Time 09/02/2024 01:52PM

Executed By Rowan Faint

Weather Sunny

Comments

Well Information

Gatic Type Old

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:24 PM

Groundwater Data

Well MW2 Date/Time 07/02/2024 02:37PM

Measurement MethodDipDryNoWater Depth (mbTOC)3.01Well Depth (mbTOC)7.575

Product Depth

(mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW2 Date/Time 07/02/2024 02:43PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 3 Well Depth (mbTOC)

Product Depth

(mbTOC)

Comments & Product

Description

After hydrasleeve deployment

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW2 Date/Time 09/02/2024 01:31PM

Measurement Method Dip Dry

Well Depth (mbTOC)

No

09/02/2024 01:37PM

Water Depth (mbTOC)

Product Depth

(mbTOC) Comments & Product

Description

Before hydrasleeve sampling

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well

Well Head PID (PPM)

Product Confirmed by Bailer

No

MW2

2.97

Measurement Method Dip

Dry

Well Depth (mbTOC)

Date/Time

Water Depth (mbTOC) 3.27

Product Depth (mbTOC)

Comments & Product

After hydrasleeve sampling Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer

No

Page 58 of 81

Sampled Date/Time 09/02/2024 01:51PM

Well MW2
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW2

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
01:51PM	27224	6.59	92.7	3.05	23.2
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW1

Arrival Date/Time 09/07/2024 08:40AM Departure Date/Time 09/07/2024 09:17AM

Executed By Rowan Faint
Weather Light rain

Comments

Well Information

Gatic Type Key Type

Well Condition

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:11 PM

Page 61 of 81

Sampled Date/Time 09/07/2024 09:16AM

Well

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) SW1

Purge Method

Sample Method Grab

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light brown, light grey

Sample Odour (Description) no odour

Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
09:15AM	334	7.08	38	6.3	13.6
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code SW2

Arrival Date/Time 09/07/2024 09:54AM Departure Date/Time 09/07/2024 10:01AM

Executed By Rowan Faint

Weather Overcast

Comments

Well Information

Gatic Type

Key Type

Well Condition

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:12 PM

Page 64 of 81

Sampled Date/Time 09/07/2024 09:55AM

Well

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) SW2

Purge Method

Sample Method Grab

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light grey
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
09:54AM	370.4	8.48	-18	6.09	13.7
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW2

Arrival Date/Time 09/07/2024 10:09AM Departure Date/Time 11/07/2024 02:47PM

Executed By Rowan Faint

Weather Overcast

Comments

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Good

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:13 PM

Groundwater Data

Well MW2 Date/Time 09/07/2024 10:10AM

Measurement MethodDipDryNoWater Depth (mbTOC)2.577Well Depth (mbTOC)7.58

Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW2 Date/Time 11/07/2024 02:29PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.555 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 11/07/2024 02:36PM

Well MW2
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW2

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	°C
02:36PM	23588	6.45	-17.6	1.42	18.2
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW4

Arrival Date/Time 09/07/2024 10:47AM Departure Date/Time 11/07/2024 03:15PM

Executed By Rowan Faint

Weather Overcast

Comments Gatic flooded

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:14 PM

Groundwater Data

Well MW4 Date/Time 09/07/2024 10:47AM

Well Depth (mbTOC)

6.795

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.325 Product Depth

(mbTOC)
Comments & Product
Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW4 Date/Time 11/07/2024 02:59PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.31 Well Depth (mbTOC)

Product Depth

(mbTOC)
Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 11/07/2024 03:09PM

Well MW4
Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW4

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen
Sample Turbidity (Description) Non-turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
03:08PM	14807	6.64	-58.7	1.29	18.4
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW6

Arrival Date/Time 09/07/2024 11:01AM Departure Date/Time 11/07/2024 03:35PM

Executed By Rowan Faint

Weather Overcast

Comments

Well Information

Gatic Type Stick up

Key Type None

Well Condition Good

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:15 PM

Groundwater Data

Well MW6 Date/Time 09/07/2024 11:02AM

Measurement MethodDipDryNoWater Depth (mbTOC)3.565Well Depth (mbTOC)7.16

Product Depth (mbTOC)

Comments & Product

Description

Brown silt on IP

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW6 Date/Time 11/07/2024 03:23PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 3.557 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 11/07/2024 03:34PM

Well MW6
Matrix Type Water

Equipment ID

Sample Comments Insufficient sample remaining for water quality parameters

Field ID (Primary) MW6

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) colourless
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Suspended sediments

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW3

Arrival Date/Time 09/07/2024 11:17AM Departure Date/Time 11/07/2024 04:22PM

Executed By Rowan Faint

Weather Overcast

Comments

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:16 PM

Groundwater Data

Well MW3 Date/Time 09/07/2024 11:33AM

Measurement MethodDipDryNoWater Depth (mbTOC)2.88Well Depth (mbTOC)8.05

Water Depth (mbTOC) 2.88 Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW3 Date/Time 11/07/2024 04:16PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 2.875 Well Depth (mbTOC)

Product Depth (mbTOC)

Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 11/07/2024 04:17PM

Well MW3

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW3

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1) QC104

QA Sample ID (2) QC204

QA Sample ID (3) QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
04:17PM	28201	5.86	15	2.2	18.3
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Monitoring Round: S20102_09 Jul 2024

Location Visit

Site ID S20102 Monitoring Zone

Location Code MW1

Arrival Date/Time 09/07/2024 11:47AM Departure Date/Time 11/07/2024 04:54PM

Executed By Rowan Faint
Weather Overcast

Comments

Well Information

Gatic Type New

Key Type 8mm hex key

Well Condition Average

Authorisation

Checked By Bec Chapple

Date Checked 09 Aug 2024 01:16 PM

Groundwater Data

Well MW1 Date/Time 09/07/2024 11:55AM

 Measurement Method
 Dip
 Dry
 No

 Water Depth (mbTOC)
 1.93
 Well Depth (mbTOC)
 6.61

Product Depth

(mbTOC)
Comments & Product

Description
Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Well MW1 Date/Time 11/07/2024 04:40PM

Measurement Method Dip Dry No

Water Depth (mbTOC) 1.925 Well Depth (mbTOC)

Product Depth

(mbTOC)
Comments & Product

Description

Equipment ID

Sediment Thickness (m)

Depth to Water with Pump (m)

gauging

Well Head PID (PPM)

Product Confirmed by Bailer No

Sample Data

Sampled Date/Time 11/07/2024 04:41PM

Well MW1

Matrix Type Water

Equipment ID

Sample Comments

Field ID (Primary) MW1

Purge Method

Sample Method Hydrasleeve

Waste Disposal

Purge Observations (purge start)

Purge Colour (Description)

Purge Odour (Description)

Purge Sheen (Description)

Purge Turbidity (Description)

Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Slightly turbid

QA Samples

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

Purge/Sampling Comments

Air Bubbles in Vials No

Headspace PID Reading(s)

Reaction with Preservatives No

Recharge-ability

Water Depth at end of Sampling (m)

Field Chemistry

	EC (Field)	pH (Field)	Redox (Field)	Dissolved Oxygen (Field)	Temp (Field)
Time	uS/cm	pH Units	mV	mg/L	° C
04:40PM	22394	6.27	-58	1.06	17.5
Stabilisation *	±3% (3)	±0.05pH (3)	±10mV (3)	±10% (3)	±10% (3)

Green indicates readings have stabilised according to the criteria shown, red indicates they haven't. The number in brackets indicates the number of readings that need to meet the criteria for the readings to be considered stable.

Appendix C: Calibration Certificates

Interface Meter Heron H.Oil

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (30m)
Serial Number	01-7967
Client Name	Bec Chapple (Senversa)
Project Number	S20102

	Instrument Check					
Item	Test	Test Passed	Comments			
9V Battery	Klein Tools MM300 Multimeter	✓	Battery voltage reading above 7.9V			
Battery Box	Check	✓	No damage			
Face and Back Plates	Check	✓	No damage			
Thumb Screws	Check	✓	Rubber ends intact			
Tape Hangar/Protector	Check	✓	No damage			
On/Off Button	Operation	✓	Button is functional			
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product			
LED Signal Light	Operation	✓	LED light functional – green and red			
Probe	Operation/Check	✓	Decontaminated, cleaned and tested			
Tape	Condition/Check	✓	Decontaminated and cleaned, no damage			
Connection	Check	✓	Probe and link connected correctly and tightly			
РСВ	Operation	✓	Unit is fully functional			
Electronics Panel	Orientation	✓	Correctly aligned			

Instrument Readings					
Product	Buzzer	LED Light			
H₂O	Intermittent	Blinking – Red			
Petroleum	Solid	Steady – Red			

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	01/02/2023
Calibration Due	01/08/2023

Water Quality Meter YSI Professional Plus

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	YSI Professional Plus Water Quality Meter w/ 1m Quatro Cable
Serial Number	21A102654
Client Name	Bec Chapple (Senversa)
Project Number	S20102
Comments	-

Instrument Check					
Item	Test	Test Passed	Comments		
2 x Alkaline C-size Batteries Klein Tools MM300 Multimeter		✓	Both batteries reading above 2.9V		
Battery Saver Function	Operation	✓	Automatically turns off after 60 minutes if idle		
Unit Display	Operation	✓	Screen visible, no damage		
Keypad	Operation	✓	Responsive, no damage		
Connection Port and Cable	Condition/Check	✓	Clean, no damage		
Monitor Housing	Condition/Check	✓	No damage		
Firmware	Version	✓	4.0.0		
pH Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
pH millivolts for pH 7.00	Calibration	✓	pH 7.00 calibration range between 0 mV ± 50 mV		
pH millivolts for pH 4.00 Calibration		✓	pH 4 mV range +165 to +180 from 7 buffer mV value		
pH slope Calibration		✓	Range between 55 to 60 mV/pH (ideal value 59 mV)		
Response time < 90 seconds Calibration		✓	Responds to correct value within 90 seconds		
ORP Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
ORP Reading	Calibration	✓	Within ± 80 mV of reference Zobell Reading		
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds		
Conductivity/Temp Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
Conductivity Cell	Calibration	✓	Conductivity cell constant 5.0 ± 1.0 in GLP file		
Clean Sensor Readings	Calibration	✓	Clean sensor reads less than 3 uS/cm in dry air		
Dissolved Oxygen Probe Condition/Calibration		✓	Calibrated and conforms to manufacturer's specs		
DO Cap	Condition/Calibration	✓	1.25 mil PE membrane (yellow membrane)		
DO Sensor in Use	Condition	✓	Polarographic DO sensor		
DO Sensor Value Calibration		✓	(min 4.31 uA - max 8.00 uA) Avg 6.15 uA		

Instrument Readings

mistrament headings						
Parameter	Standard Used	Reference No.	Calibration Value	Observed	Actual	Units
Temperature	Centre 370 Thermometer	Room Temp.	26.6	26.5	26.6	°C
pН	pH 4.00	386466	4.01	4.04	4.01	рН
pН	pH 7.00	387329	7.00	6.96	7.00	рН
Conductivity	2760 μs/cm at 25°C	388521	2760	2797	2760	μs/cm
ORP (Ref. check only)	Zobell A & B	380835/382785	229.9	223.8	229.9	mV
Zero Dissolved O ₂	NaSO ₃ in Distilled H ₂ O	389912	0.0	0.3	0.0	%
100% Dissolved O ₂	100% Air Saturated H₂O	Fresh Air	100.0	108.1	100.0	%

7Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

Calibrated By	William Pak
Calibration Date	01/02/2023
Calibration Due	01/08/2023

Interface Meter Heron H.Oil

	-
Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (60m)
Serial Number	01-8640
Client Name	Bec Chapple (Senversa)
Project Number	S20102

	Instrument Check				
Item	Test	Test Passed	Comments		
9V Battery	Klein Tools MM300 Multimeter	ools MM300 Multimeter ✓ Battery voltage reading above 7.9V			
Battery Box	Check	✓	No damage		
Face and Back Plates	Check	✓	No damage		
Thumb Screws	Check	✓	Rubber ends intact		
Tape Hangar/Protector	Check	✓	No damage		
On/Off Button	Operation	✓	Button is functional		
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product		
LED Signal Light	Operation	✓	LED light functional – green and red		
Probe	Operation/Check	✓	Decontaminated, cleaned and tested		
Tape	Condition/Check	✓	Decontaminated and cleaned, no damage		
Connection	Check	✓	Probe and link connected correctly and tightly		
PCB	Operation	✓	Unit is fully functional		
Electronics Panel	Orientation	✓	Correctly aligned		

Instrument Readings				
Product Buzzer LED Light				
H₂O	Intermittent	Blinking – Red		
Petroleum	Solid	Steady – Red		

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	30/07/2023
Calibration Due	30/01/2024

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamscientific.com.au

Water Quality Meter YSI Professional Plus

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	YSI Pro Plus Water Quality Meter w/ 1m Quatro Cable
Serial Number	20B122031
Client Name	Hayley Yellowlees/Chris Redford (Senversa)
Project Number	S20049
Comments	-

Instrument Check					
Item	Test	Test Passed	Comments		
2 x Alkaline C-size Batteries	Klein Tools MM300 Multimeter	✓	Both batteries reading above 2.9V		
Battery Saver Function	Operation	✓	Automatically turns off after 60 minutes if idle		
Unit Display	Operation	✓	Screen visible, no damage		
Keypad	Operation	✓	Responsive, no damage		
Connection Port and Cable	Condition/Check	✓	Clean, no damage		
Monitor Housing	Condition/Check	✓	No damage		
Firmware	Version	✓	4.0.0		
pH Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
pH millivolts for pH 7.00	Calibration	✓	pH 7.00 calibration range between 0 mV ± 50 mV		
pH millivolts for pH 4.00	Calibration	✓	pH 4 mV range +165 to +180 from 7 buffer mV value		
pH slope	Calibration	✓	Range between 55 to 60 mV/pH (ideal value 59 mV)		
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds		
ORP Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
ORP Reading	Calibration	✓	Within ± 80 mV of reference Zobell Reading		
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds		
Conductivity/Temp Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
Conductivity Cell	Calibration	✓	Conductivity cell constant 5.0 ± 1.0 in GLP file		
Clean Sensor Readings	Calibration	✓	Clean sensor reads less than 3 uS/cm in dry air		
Dissolved Oxygen Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
DO Cap	Condition/Calibration	✓	1.25 mil PE membrane (yellow membrane)		
DO Sensor in Use	Condition	✓	Polarographic DO sensor		
DO Sensor Value	Calibration	✓	(min 4.31 uA - max 8.00 uA) Avg 6.15 uA		

Instrument Readings

			0			
Parameter	Standard Used	Reference No.	Calibration Value	Observed	Actual	Units
Temperature	Centre 370 Thermometer	Room Temp.	14.2	14.6	14.2	°C
pН	pH 4.00	386466	4.01	4.05	4.01	рН
pН	pH 7.00	387329	7.00	7.07	7.00	рН
Conductivity	2760 μs/cm at 25°C	388521	2760	2629	2760	μs/cm
ORP (Ref. check only)	Zobell A & B	380835/382785	253.2	259.6	253.2	mV
Zero Dissolved O ₂	NaSO ₃ in Distilled H ₂ O	389912	0.0	0.1	0.0	%
100% Dissolved O ₂	100% Air Saturated H₂O	Fresh Air	100.0	100.4	100.0	%

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

Calibrated By	William Pak
Calibration Date	14/08/2023
Calibration Due	14/02/2024

Water Quality Meter YSI Professional Plus

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	YSI Pro Quatro Water Quality Meter w/ 1m Quatro Cable
Serial Number	21A102654
Client Name	Rowan Faint (Senversa)
Project Number	S20102
Comments	-

Instrument Check					
Item Test		Test Passed	Comments		
2 x Alkaline C-size Batteries	Alkaline C-size Batteries Klein Tools MM300 Multimeter		Both batteries reading above 2.9V		
Battery Saver Function	Operation	✓	Automatically turns off after 60 minutes if idle		
Unit Display	Operation	✓	Screen visible, no damage		
Keypad	Operation	✓	Responsive, no damage		
Connection Port and Cable	Condition/Check	✓	Clean, no damage		
Monitor Housing	Condition/Check	✓	No damage		
Firmware	Version	✓	4.0.0		
pH Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
pH millivolts for pH 7.00	Calibration	✓	pH 7.00 calibration range between 0 mV ± 50 mV		
pH millivolts for pH 4.00	Calibration	✓	pH 4 mV range +165 to +180 from 7 buffer mV value		
pH slope	Calibration	✓ Range between 55 to 60 mV/pH (ideal value 59			
Response time < 90 seconds	Calibration	✓	✓ Responds to correct value within 90 seconds		
ORP Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
ORP Reading	Calibration	✓	Within ± 80 mV of reference Zobell Reading		
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds		
Conductivity/Temp Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
Conductivity Cell	Calibration	✓	Conductivity cell constant 5.0 ± 1.0 in GLP file		
Clean Sensor Readings	Calibration	✓	Clean sensor reads less than 3 uS/cm in dry air		
Dissolved Oxygen Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs		
DO Cap	Condition/Calibration	✓	1.25 mil PE membrane (yellow membrane)		
DO Sensor in Use	Condition	✓	Polarographic DO sensor		
DO Sensor Value	Calibration	✓	(min 4.31 uA - max 8.00 uA) Avg 6.15 uA		

Instrument Readings

Parameter	Standard Used	Reference No.	Calibration Value	Observed	Actual	Units
Temperature	Centre 370 Thermometer	Room Temp.	27.7	28.1	27.7	°C
рН	pH 4.00	386466	4.01	4.05	4.01	рН
рН	pH 7.00	387329	7.00	7.02	7.00	рН
Conductivity	2760 μs/cm at 25°C	388521	2760	2589	2760	μs/cm
ORP (Ref. check only)	Zobell A & B	380835/382785	225.3	230.1	225.3	mV
Zero Dissolved O ₂	NaSO ₃ in Distilled H ₂ O	389912	0.0	-0.1	0.0	%
100% Dissolved O ₂	100% Air Saturated H ₂ O	Fresh Air	100.0	93.7	100.0	%

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

Calibrated By	William Pak
Calibration Date	31/01/2024
Calibration Due	31/07/2024

Interface Meter Heron H.Oil

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (30m)
Serial Number	01-8895
Client Name	Rowan Faint (Senversa)
Project Number	S20102

	Instrun	nent Check	
Item	Test	Test Passed	Comments
9V Battery	Klein Tools MM300 Multimeter	✓	Battery voltage reading above 7.9V
Battery Box	Check	✓	No damage
Face and Back Plates	Check	✓	No damage
Thumb Screws	Check	✓	Rubber ends intact
Tape Hangar/Protector	Check	✓	No damage
On/Off Button	Operation	✓	Button is functional
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product
LED Signal Light	Operation	✓	LED light functional – green and red
Probe	Operation/Check	✓	Decontaminated, cleaned and tested
Tape	Condition/Check	✓	Decontaminated and cleaned, no damage
Connection	Check	✓	Probe and link connected correctly and tightly
PCB	Operation	✓	Unit is fully functional
Electronics Panel	Orientation	✓	Correctly aligned

Instrument Readings					
Product Buzzer LED Light					
H₂O	Intermittent	Blinking – Red			
Petroleum	Solid	Steady – Red			

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	31/01/2024
Calibration Due	31/07/2024

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamscientific.com.au

Water Quality Meter YSI Professional Plus

	·	WAM Scientific						
Company Name								
Office Address		_	hipping Norton N	SW 2170				
Phone Number		5 241 484						
Contact Name	William	n Pak						
Instrument	YSI Pro	Quatro Water Qu	uality Meter w/ 1	m Quatro Cabl	e			
Serial Number	21A102	2654						
Client Name	Rowan	Faint (Senversa)						
Project Number	S20102	S20102						
Comments	-	-						
			Instrum	ent Check				
Item		Te	st	Test Passed		Co	mments	
2 x Alkaline C-size Ba	itteries	Klein Tools MM3	300 Multimeter	✓	Both	batteries reading a	bove 2.9V	
Battery Saver Fund	ction	Opera	ation	✓			after 60 minutes if i	dle
Unit Display		Opera		✓	Scree	en visible, no dama	ge	
Keypad		Opera	ation	✓	Resp	onsive, no damage		
Connection Port and	l Cable	Condition	n/Check	✓	Clear	n, no damage		
Monitor Housin	ng	Condition	n/Check	✓	No d	amage		
Firmware		Vers		✓	4.0.0	1		
pH Probe		Condition/0	Calibration	✓		librated and conforms to manufacturer's specs		
pH millivolts for pH		Calibr	ation	✓			ge between 0 mV ± 5	
pH millivolts for pH	4.00	Calibr		✓			+180 from 7 buffer	
pH slope		Calibr		✓) mV/pH (ideal value	
Response time < 90 s	econds	Calibr		√		onds to correct value within 90 seconds		
ORP Probe		Condition/0		✓		brated and conforms to manufacturer's spe		
ORP Reading		Calibr		√	1	Within ± 80 mV of reference Zobell Reading		
Response time < 90 se		Calibr		√	Responds to correct value within 90 seconds			
Conductivity/Temp		Condition/0		<u>√</u>			s to manufacturer's	•
Conductivity Ce		Calibr		<u>√</u>	1	•	nt 5.0 ± 1.0 in GLP fi	
Clean Sensor Read		Calibr		<u>√</u>			than 3 uS/cm in dry	
Dissolved Oxygen F DO Cap	rope	Condition/C		<u>√</u>			s to manufacturer's (yellow membrane)	specs
DO Cap DO Sensor in Us	20	Condition/C		✓		rographic DO senso		
DO Sensor Valu		Calibra		<u> </u>		4.31 uA - max 8.00		
DO SEIISOI VAIU		Calibra		nt Readings	[(111111	JI UA IIIAX 0.00	ary Avg 0.13 uA	
Parameter	Sta	ndard Used	Reference No.	Calibration \	/alue	Pre-Cal Value	Post-Cal Value	Units
Temperature		re 370 Therm.	Room Temp.	15.0	raiue	14.7	15.0	°C
pH	Cent	pH 4.00	417183	4.01		4.05	4.01	pH
pH		pH 7.00	419528	7.00		6.93	7.00	рН
Conductivity	2760	μs/cm at 25°C	399819	2760		2750	2760	μs/cm
ORP		obell A & B	420448/418958	251.0		260.3	251.0	mV
Zero Dissolved O ₂		in Distilled H ₂ O	426184	0.0		0.5	0.0	%
100% Dissolved O ₂		ir Saturated H ₂ O	Fresh Air	100.0		93.9	100.0	%
_				ration				

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied

William Pak

27/06/2024

27/12/2024

was obtained in accordance with manufacturer's specifications using solutions of known values.

Calibrated By

Calibration Date

Calibration Due

Interface Meter Heron H.Oil

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (30m)
Serial Number	01-09486
Client Name	Rowan Faint (Senversa)
Project Number	S20102

	Instrun	nent Check	
Item	Test	Test Passed	Comments
9V Battery	Klein Tools MM300 Multimeter	✓	Battery voltage reading above 7.9V
Battery Box	Check	✓	No damage
Face and Back Plates	Check	✓	No damage
Thumb Screws	Check	✓	Rubber ends intact
Tape Hangar/Protector	Check	✓	No damage
On/Off Button	Operation	✓	Button is functional
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product
LED Signal Light	Operation	✓	LED light functional – green and red
Probe	Operation/Check	✓	Decontaminated, cleaned and tested
Tape	Condition/Check	✓	Decontaminated and cleaned, no damage
Connection	Check	✓	Probe and link connected correctly and tightly
PCB	Operation	✓	Unit is fully functional
Electronics Panel	Orientation	✓	Correctly aligned

Instrument Readings					
Product Buzzer LED Light					
H₂O	Intermittent	Blinking – Red			
Petroleum	Solid	Steady – Red			

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	27/06/2024
Calibration Due	27/12/2024

Appendix D: Quality Assessment / Quality Control

Job Number:	S20102
Report Title:	Surface Water and Groundwater Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
	Bec Chapple 9-Aug-24
Completed By: Date: Verified By:	

SAMPLE DELIVERY GROUP (SDG):	ES2304342	SAMPLE DELIVERY GROUP (SDG):	ES2304011
Laboratory:	ALS	Laboratory:	ALS
Sample Dates:	10-Feb-23	Sample Dates:	8-Feb-23
Sample Media:	Water	Sample Media:	Water

Quality Assurance Process Standard Procedures							
	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
	Standard field sampling procedures and forms used	No deviation from standard procedure and	Borelogs, field sheets, COCs, data	Criteria Met? Yes		Criteria Met? Yes	
	otalidad liod saliipiing procedures and roms acco	forms used.	tables	100		100	
Equipment Calibration	All equipment calibrated in accordance with manufacturers	All equipment calibrated in accordance with	Calibration Certificates / Records	Yes		Yes	
Testing Method	specifications NATA accredited methods used for all analyses determined	manufacturers specifications. Primary and secondary laboratories to use	Laboratory Report	Yes		Yes	
Accreditation		NATA accredited methods for all analytes					
Quality Control Sampling	Field QC sampling frequency in accordance with AS4482.1-	determined. Field (Intra-laboratory) Duplicates - ≥ 1 in 20	QA/QC register (within field book)	N/A	Relevant intra-laboratory QC samples for this WME reported	Yes	QC101
	2005	primary samples.	, , , , , , , , , , , , , , , , , , , ,		in batch ES2304011.		
		(note that PFAS NEMP recommends 1 in 10 for PFAS investigations)					
		Secondary (inter-laboratory) duplicates - ≥ 1 in	QA/QC register (within field book)	N/A	Relevant inter-laboratory QC samples for this WME reported	N/A	Relevant inter-laboratory QC samples for this WME reported
		20 primary samples.			in batch 316159.		in batch 316159.
		(note that PFAS NEMP recommends 1 in 10 for PFAS investigations)					
		Rinsate Blanks - ≥ 1 per day, per matrix per	QA/QC register (within field book)	N/A	Relevant intra-laboratory QC samples for this WME reported	Yes	QC301
		equipment.			in batch ES2304011.		
		Trip Blanks - ≥ 1 per esky containing samples	QA/QC register (within field book)	N/A	Relevant intra-laboratory QC samples for this WME reported	Yes	QC401
	Laboratory CO and win for suppose in accordance with NEDO	for volatiles.	Laborator Donasto	No	in batch ES2304011.	No	A laboratory dualizate for DALI/Dhonele and TDLI
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	Laboratory Reports	No	A laboratory duplicate for PAH/Phenols and TRH- Semivolatile fraction was not analysed, resulting in a non-	No	A laboratory duplicate for PAH/Phenols and TRH- Semivolatile fraction was not analysed, resulting in a non-
					conformance for frequency for this analysis. Not considered to		conformance for frequency for this analysis. Not considered t
					impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory		impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory
					field duplicates were analysed for PAH/ phenols and TRH		field duplicates were analysed for PAH/ phenols and TRH
					semivolatile fraction and were DQI compliant.		semivolatile fraction and were DQI compliant.
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Surrogate Recoveries - all samples spiked	Laboratory Reports	Yes		Yes	
		where appropriate (e.g. chromatographic analysis of organics).					
		Laboratory Control Samples - at least 1 per	Laboratory Reports	Yes		Yes	
		process batch. Matrix Spikes - at least 1 per matrix type per	Laboratory Reports	No	A matrix spike for PAH/Phenols and TRH-Semivolatile	No	A matrix spike for PAH/Phenols, dissolved metals and TRH-
		process batch.	,		fraction was not analysed, resulting in a non-conformance for		Semivolatile fraction was not analysed, resulting in a non-
					frequency for this analysis. Not considered to impact upon		conformance for frequency for this analysis. Not considered to
					assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field duplicates were		impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory
					analysed for PAH/ phenols and TRH semivolatile fraction and		field duplicates were analysed for PAH/ phenol, dissolved
					were DQI compliant.		metals and TRH semivolatile fraction and were DQI
Sample Preservation,	Samples appropriately preserved upon collection, stored and	In accordance with laboratory specific method	Laboratory Reports	Yes		Yes	compliant.
Handling and Holding Times	transported, and analysed within holding times	requirements.					
		Unless specific method indicates otherwise, soil and water samples should be stored,					
		transported and received by the laboratory at <					
		6°C.					
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT).	Yes		Yes	
			100% check of manually entered data				
			(e.g. field parameters, gauging data).				
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	Results Tables	Yes		Yes	
,		investigation levels.					
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review		Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
Field (Intra-laboratory)	Field Duplicate samples used assess the variability in analyte	Analysed for same chemicals as primary	lab reports, review data etc) ESDAT generated summary of relative	Criteria Met?	Relevant intra-laboratory QC samples for this WME reported	Criteria Met? Yes	
Duplicate Sampling and	concentration between samples collected from the sample	sample.	percent difference (RPD) results for	N/A	in batch ES2304011.	165	
Analysis	location and the reproducibility of the laboratory analysis.	RPD <30% of mean conc. where both conc.	field duplicate samples.				
	Where required, resubmission of previously analysed samples for chemicals within their holding times may be	>20 x LOR RPD <50% of mean conc. where both conc.	1				
	- destrict to the feather and the second of	10-20 x LOR					
,	undertaken to further assess precision level of precision.						
	undertaken to further assess precision level of precision.	RPD No limit where both conc. < 10 x LOR					
Secondary Inter-laborator)	Results are accurate and free from laboratory error.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary	ESDAT generated summary of relative	N/A		N/A	Relevant inter-laboratory QC samples for this WME reported
Duplicate Sampling and	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample.	percent difference (RPD) results for	N/A	Relevant inter-laboratory QC samples for this WME reported in batch 316159.	N/A	Relevant inter-laboratory QC samples for this WME reported in batch 316159.
Duplicate Sampling and Analysis	Results are accurate and free from laboratory error.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR.		N/A		N/A	
Duplicate Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc.	percent difference (RPD) results for	N/A		N/A	
Duplicate Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR.	percent difference (RPD) results for	N/A		N/A	
Duplicate Sampling and Analysis Field Rinsate Blank	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported		
Duplicate Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples.		in batch 316159.		
Duplicate Sampling and Analysis Field Rinsate Blank	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 316159. Relevant intra-laboratory QC samples for this WME reported		
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011.	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011.		
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance, in general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <60% of mean conc. where both conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance, In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory outrol samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance, in general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD < 30% of mean conc. where both conc. > 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes	in batch 316159. Mattix spike recovery not determined for manganese and
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes Yes	In batch 316159. Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance, in general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD < 30% of mean conc. where both conc. > 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes Yes	in batch 316159. Mattix spike recovery not determined for manganese and
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD < 30% of mean conc. where both conc. > 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD < 30% of mean conc. where both conc. > 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Ves	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Ves	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Ves	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory outrol samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed searchy like field samples. These blanks are used by the laboratory to assess contamination introduced during	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Ves	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory outrol samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed searchy like field samples. These blanks are used by the laboratory to assess contamination introduced during	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Ves	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes	Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory ontrol samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to example preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes NO Yes	In batch 316159. Mattix spike recovery not determined for manganese and nitrite as N as the background level greater than or equal to 4x
Duplicate Sampling and Analysis Field Rinsate Blank Preparation D Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory ontrol samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to example preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD < 30% of mean conc. where both conc. > 20 x LOR. RPD < 50% of mean conc. where both conc. 10 - 20 x LOR. RPD < LOR. RPD < LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes NO Yes	In batch 316159. Mattix spike recovery not determined for manganese and nitrie as N as the background level greater than or equal to 4:
Duplicate Sampling and Analysis Field Rinsate Blank Preparation 9 Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory duplicates are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. <10 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes Yes	in batch 316159. Relevant intra-laboratory QC samples for this WME reported in batch ES2304011. Relevant intra-laboratory QC samples for this WME reported	Yes Yes Yes N/A Yes NO Yes	In batch 316159. Mattix spike recovery not determined for manganese and nitrie as N as the background level greater than or equal to 4

Job Number:	S20102
Report Title:	Surface Water and Groundwater Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
Completed By:	Bec Chapple 9-Aug-24

SAMPLE DELIVERY GROUP (SDG):	316159	SAMPLE DELIVERY GROUP (SDG):	ES2326328
Laboratory:	Envirolab	Laboratory:	ALS
Sample Dates:	8-Feb-23	Sample Dates:	14-Aug-23
Sample Media:	Water	Sample Media:	Water

March 1999/06 March 1999/0								
Management Man		Objectives & Measure	Acceptance Criteria	Source of Information		Notes/Details of Nonconformance		Notes/Details of Nonconformance
March Marc		Standard field sampling procedures and forms used	No deviation from standard procedure and	Borelogs, field sheets COCs data				
March Marc			forms used.	tables				
Comment	Equipment Calibration			Calibration Certificates / Records	Yes		Yes	
Marie	Testing Method			Laboratory Report	Yes		Yes	
Command Continues Comm	Accreditation		-					
March Marc	Quality Control Sampling	Field QC sampling frequency in accordance with AS4482.1-		QA/QC register (within field book)	N/A	Primary laboratory received sample	Yes	QC102
Application	Frequency	2005						
Comment of the Comm								
Part				QA/QC register (within field book)	Yes	QC201	N/A	Relevant inter-laboratory QC samples for this WME reported
April								in batch 1020195.
Part Company Part			for PFAS investigations)					
April 1 1 1 1 1 1 1 1 1				QA/QC register (within field book)	N/A	Primary laboratory received sample	Yes	QC302
The company of an international content of the company			oquip. 10.11					
Commonweight Comm				QA/QC register (within field book)	N/A	Primary laboratory received sample	Yes	QC502
March Marc		Laboratory QC analysis frequency in accordance with NEPC		Laboratory Reports	Yes		No	A laboratory duplicate for PAH/Phenols and TRH-
Part Company		2013						Semivolatile fraction was not analysed, resulting in a non- conformance for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenois and TRH semivolatile fraction and were DQI compliant.
Annual Content			Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
March 1996]		Surrogate Recoveries - all samples spiked	Laboratory Reports	Yes		Yes	
ACCEPTAGE AND AC								
Part				Laboratory Reports	Yes		Yes	
Seath research control of the contro			process batch.					
Section of the control of the contro			process batch.				No	A matrix spike for PAH/Phenols and TRH-Semivolatile fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.
March 1997 1			-	Laboratory Reports	No		Yes	
Intercontant Accounts of the Control								
Company Mark Mark Company								
Similar Security Control Contr								
Controlled Control Process	Data Management	No errors in data transcription		10% check of electronically imported	Yes	- Indiana in the control of the cont	Yes	
County County Opening Memory County County Opening Memory County County Opening Memory County County Opening Memory County Count				100% check of manually entered data				
Coulty Court of Protection Selection Court of Protection Court of	Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	Results Tables	Yes		Yes	
Many distributions of the standard production and all assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess to the standard production and assess the s	<u> </u>		. –					
Many distributions of the standard production and all assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess the worked by resident and extension to improve the standard production and assess to the standard production and assess the s	Quelity Control 7	Objectives C Mass.	A acoustones Oritaria	Henry (i.e. FORAT-	Accept	Notes/Datella of Na	Accept	Nata (Patrilla of Na
The District incoming of the Control control of the	Quality Control Process	Objectives & Measure	Acceptance Criteria			Notes/Details of Nonconformance		Notes/Details of Nonconformance
Declaration from the management of the managemen	Field (Intra-laboratory)	Field Duplicate samples used assess the variability in analyte	Analysed for same chemicals as primary			Primary laboratory received sample	No No	RPD exceeded for Zinc (49%) in primary sample MW3 and
When experience of processing any support of processing any support of processing and processing of processing and processing	Duplicate Sampling and	concentration between samples collected from the sample	sample.	percent difference (RPD) results for				duplicate sample QC102. Both results above adopted
usurates to furnificate active the ordinary and the production of production to furnificate active the ordinary active. See 201-128. Generally Principle (Control of the production of the prod				field duplicate samples.				assessment criteria, therefore does not alter interpretation of
Controlly feel absoluted Controlly feel absolute Controlly feel absoluted Controlly feel absolut			RPD <50% of mean conc. where both conc.	1				
Scool by Hors Library (1994) The control of the Co		undertaken to further assess precision level of precision.						
Desiration Equation (Control Analysis) Analysis (Control Analysis) Analysis (Control (Control (Control Analysis) Analysis (Control								
Librariany Control Strategy Librariany Strategy Processors of the Strategy Processors of S								
Prof. Discovery Control Starting Listocology Control Starting Accordance Associated an analysis of the control Starting Associated an analysis of the control Starting Associated an analysis of the control Starting Associated an analysis of the control Associated analysis of the control A					No		N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1020195
Position Continue	Duplicate Sampling and	Secondary duplicate samples sent to a secondary laboratory	sample. RPD <30% of mean conc. where both conc.	percent difference (RPD) results for	No	MW3 and triplicate sample QC201. No adopted assessment	N/A	
Find Prince Basis Programation & Control Control Interview Control Control Interview Control C	Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	sample. RPD <30% of mean conc. where both conc. >20 x LOR.	percent difference (RPD) results for	No	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not	N/A	
Programment of Analysis according food and the courty over from earpring against an expension of Analysis and Section of the search of the sea	Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc.	percent difference (RPD) results for	No	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not	N/A	
Fig. Blank Surpring and Cross contamination between named abose not occur in female agreement planning genociative. Librorativy Applications Librorativy Applications Librorativy Applications Librorativy control discretion View View View View Librorativy control discretion View Librorativy control discretion View Librorativy control discretion View View Librorativy control discretion View Librorativy control discretion View Librorativy control discretion View Librorativy control discretion View Librorativy control	Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	sample. RPD<30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples.		MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results.		
Assystis transfer or as an antificit of the sampling handing procedure. Laboratory Duplicates Laboratory duplicates are used to bett the procision of the absoratory massurements. Laboratory Duplicates Laboratory duplicates are used to bett the procision of the absoratory massurements. Laboratory Control Samples (LCS) are used to easies so visual method performance in general these aserptices are unline. Dynamic monowy limits as specified by incomposition of the absoratory control samples (LCS) are used to easies so visual method performance in general these aserptices are unline. Donation of the processor of the processor of the absoratory control samples (LCS) are used to easies so visual method performance in general these aserptices are unline. Donation of the processor of the processor of the processor of the absoratory of analyses. Surregular Recovery Danagian Recovery Danagian Recovery All and its Spike and its are arrived processor in a sample spike of the sample applied with a income concentration of the sample applied processor in a sample applied with a income concentration of the sample applied processor in a sample applied processor in a sample applied with a income concentration of the sample applied with a income concentration of the sample applied with a income concentration of the sample applied processor in a sample applied with a income concentration of the sample applied	Duplicate Sampling and Analysis Field Rinsate Blank	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between	sample. RPD<30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results.		
As all positions of the sampling banding procedure. Laboratory Cupilitatis Veet Opinion recovery initia as specified by laboratory. Veet Veet Opinion recovery initia as specified by laboratory. As specified by laboratory (specifis opinion recovery initia as specified by laboratory (specifis opini	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. RPD<30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results.		
As all positions of the sampling banding procedure. Laboratory Cupilitatis Veet Opinion recovery initials as specified by Maloratory very records opinion recovery initials as specified by Maloratory very cupilitatis As specified by Maloratory As pecified by Maloratory As pecifie	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. RPD<30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results.		
Liboratory Duplicates Liboratory Duplicates Liboratory Duplicates Liboratory Centrel Samples Liboratory Centrel Samples Liboratory centrel samples (LCS) are used to assess overal ontopolity of performance, in general flows samples are aimini in composition to amylyse of eliment organization to any overance amenges are aimini in composition to amylyse of eliment of Mit samples are sognic compounds that are similar in characteristic composition to amylyse and eliment of environment organization to a supples of eliment so environment and person amyles are allocated or evaluate maniar information or evaluate maniar information are anythe anythe environment on environment anythe grant elements on environment and replays and the environment and are applicated or evaluate maniar information and anything and the environment and evaluate anything and elements or excessing the laboratory and personal manifest and evaluation and environment and evaluation and environment and evaluation and ev	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	
Laboratory Control Samples Laboratory Control Samples Laboratory Control Samples Annotogatemance, in general free samples as entails in composition to environmental camples, and ordinals hose composition to environmental camples, and ordinals hose conscient of the analysis and remeal. Controlled Reference Material Analysis occurred to the Substitution Reference Material Controlled Reference Material NA NA NA NA NA NA NA NA NA N	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Liboratory Control Samples (LiGS) are used to assess overall processing and performance in great angles as senior in whethough performance in great angles as senior in which get formance in great angles as senior in which get formance in great angles as senior in the control formance in great angles as senior in the control formance in great angles and control formance in great angles angles and control formance in great angles and control formance in great angles and control formance in great and angles and control formance and are spiked in control formance in a sample processing in any spike in the great and angles in the great and and spike in the great and angles in the great angles in the g	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038
method performance in general these samples are similar in aboratory. Committed for environmental supples, and contain known amounts of the analyses of interest. Committed Reference Material Ciff Mamphies are usuad to monthly the laboratory. Surrogate Recovery Surrogate Recovery Surrogate Recovery A matrix spike is an aliqued of a sample spiked with a known concentration and surgive prior composition to analyse of interest and are spiked size or environmental surgives, prior cample preparation and analysis. Surrogate recovers are used to evaluate matrix electrocy on a sample spiked with a known concentration of the sample preparation and analysis, and the results are used to evaluate matrix. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory reports and analysis and the results are used to analyse or specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory reports and analysed scalely like field samples. These blanks are used to represent the sample matrix. Recovery 70 - 130% or dynamic limits if specified by laboratory reports and scale specified by laboratory reports and scale specified by laboratory and or reported during sample preparation activities. Recovery 70 - 130% or dynamic limits if specified limits are internally consistent, consistent with held measurements, and consistent with held measurements.	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
method performance, in general tease samples are similar in aboratory, composition to environmental supples, and contain known amounts of the analyses of interest. Confided Relevence Material CPM samples are used for mortisof the accuracy of analyses performed by the laboratory of performed and seasons of the samples of interest. Surregate Recovery Surregate Recovery Surregate Recovery A marks spike is an alloyor of a sample spiked with a known preference on a sample spiked with a known analysis. Surregate recording are used to evaluate matrix releference on a sample spiked with a known analysis, and the results are used to evaluate matrix. A marks spike is an alloyor of a sample spiked with a known analysis, and the results are used to evaluate matrix. A marks spike is an alloyor of a sample spiked with a known analysis, and the results are used to evaluate matrix. A marks spike is an alloyor of a sample spiked with a known assess the bias of an amethod in a given sample matrix. Laboratory Method Blains as closely as possible and preparation and analysis, and the results are used to the allowabout of spikes are used to represent the sample matrix. Analyse concentration of the given analyse and the results are used to the allowabout of spikes are used to represent the sample matrix. A consistent with experimental and analysed accurity like field samples. These blanks are used to the allowabout on assess contamination introduced during sample proparation activities. Analyse concentration below LORs. Analyse concentration below LORs. Analyse concentration below LORs. Analyse of controlling the controlling controlling the spike and propagation and manalysed accurity like field samples. These blanks are used to represent the sample matrix. Concentration to a specific data price. These blanks are used to represent the sample matrix. Analyse concentration of the controlling the spike of the spike	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
composition to environmental samples, and outside in adaptive of interior and an adaptive. Surrogate Recovery Surrogate are used to montor the accuracy of analyses of interior and an adaptive. Surrogate composition to analyse of interest and an adaptive. Surrogate composition to an aprile perspectation and analysis. Surrogate recovering an eu used to evaluate matrix interference on a sample specified beside. Matrix Spike Recovery A matrix spike is an aliquor of a sample spiked with a known concentration of starget analysis (business are used to evaluate matrix interference on a sample specified beside). Matrix Spike Recovery A matrix spike is an aliquor of a sample spiked with a known concentration of starget analysis (c). Spiking occurs prior to sample preparation and analysis, and the results are used to evaluate or according to the spiked and analysed exactly like field samples. These barks are prepared to represent the sample matrix as disease, as prepared to represent the sample matrix as disease, as possible and prepared extracted dispated and analysed exactly like field samples. These barks are used by the lebosotory to asses contamination induced during sample preparation activities. Potentially Anomalous Data in No discrepancies between field (laboratory and/or expected and of historical). Analytical results are internally consistent, consistent with field measurements, and consistent with selected and of historical.	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Contributed Reference Matterial Composition to analytics of interest and are spiked into environmental samples prior to sample representation and analysis. Surplate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analysis (a). Spiking cours prior to sample preparation and analysis, and the results are used to sample analysis and the results are used to sampled county in the fact of sample propers and analysis and the results are used to the blackboatch of a given sample matrix. Laboratory Method Blanks as closely as possible and prepared for represent the sample matrix is closely as possible and prepared interfaced digested and analysed county like field samples. These blanks are used to the blackboatch or bases contamination introduced during sample preparation activities. Note that the contribute Reference on the sample matrix Laboratory reports Yes Laboratory reports Yes Laboratory reports Yes Laboratory reports Yes Yes Potentially Anomalous Data analyses county like field samples. These blanks are internally consistent, or consistent with field measurements, and	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
performed by the laboratory. secovery limits). Usually not performed and assessed based on LOS results. Surrogate Recovery Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recovered are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery Amatrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample perparation and analysis, and the results are used to evaluate matrix. Laboratory Method Blanks Method blanks are prepared for represent the sample matrix. Laboratory Method Blanks as closely as possible and prepared/estracted/digested and analysed caucity like field samples. These blanks are used to the hallowork to assess ochemically and prepared/estracted/digested and analysed caucity like field samples. These blanks are used to the hallowork to assess contential introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected occusions with intermediate occusions with expected and for historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Surrogate Recovery Surrogate are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples perior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analysis, and the results are used to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Liaboratory Method Blanks Method blanks are prepared for represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the liaboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, liaboratory and/or expected must be a consistent with field measurements, and consistent with pedial measurements. Analytical results are internally consistent, consistent with pedial measurements, and consistent with expected and for historical of resolutions.	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
chemical composition to analyties of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analytie(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks are prepared to represent the sample matrix. Laboratory Method Blanks are prepared to represent the sample matrix. Analyte concentrations below LORs. a closely as possible and prepared/extracted/digested and analysed exactly (life field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data results are identified No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with septendiand/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of inferest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
chemical composition to analytes of interest and are spiked with a foreign preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of farget analytic(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix. as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory is assess contamination introduced during sample preparation activities. Potentially Anomalous Data results are identified No discrepancies between field, laboratory and/or expected and/or historical consistent with field measurements, and consistent with septected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of inferest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-spoidic basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analysis, 3, said not results are used to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data results are identified No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, with expected and consistent with expected and for historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD store. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes N/A	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with prepared and or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD st.OR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes N/A	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory reports Yes Yes Ves Yes Potentially Anomalous Data No discrepancies between field, laboratory and/or expected or results are identified Analytical results are internally consistent, on sistent with field measurements, and consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD st.OR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes N/A	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRIM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD st.OR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes N/A	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRIM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD st.OR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes N/A	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD < 50% of mean conc. where both conc. >20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to	sample. RPD < 50% of mean conc. where both conc. >20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified results are identified and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to	sample. RPD < 50% of mean conc. where both conc. >20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to	sample. RPD < 50% of mean conc. where both conc. >20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Ves	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Ves	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
results are identified consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory deplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Ves	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
results are identified consistent with field measurements, and consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to exactly like field samples. These blanks are used to mahysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Ves	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
consistent with expected and/or historical	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to exactly like field samples. These blanks are used to mahysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Ves	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this
	Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD < 50% of mean conc. where both conc. >20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD < 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes Yes	MW3 and triplicate sample QC201. No adopted assessment criteria for total phosphorus in groundwater, therefore does not impact upon interpretation of results. Primary laboratory received sample	Yes No Yes Yes Yes Yes Yes	in batch 1020195. QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this

Job Number:	S20102
Report Title:	Surface Water and Groundwater Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
Date:	9-Aug-24
Verified By:	Emma Walsh
Date:	11-Sep-24

		1	
SAMPLE DELIVERY GROUP (SDG):	1020195	SAMPLE DELIVERY GROUP (SDG):	ES2403942
Laboratory:	Eurofins	Laboratory:	ALS
Sample Dates:	14-Aug-23	Sample Dates:	15-Feb-24
Sample Media:	Water	Sample Media:	Water

	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
Process Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and	Borelogs, field sheets, COCs, data	Criteria Met? Yes		Criteria Met? Yes	
		forms used.	tables			Vac	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes	Laboratory Report	Yes		Yes	
		determined.					
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1- 2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples.	QA/QC register (within field book)	N/A	Primary laboratory received sample	N/A	Relevant intra-laboratory QC samples for this WME reported in batch ES2404239.
		(note that PFAS NEMP recommends 1 in 10					
		for PFAS investigations) Secondary (inter-laboratory) duplicates - ≥ 1 in	QA/QC register (within field book)	Yes	QC202	N/A	Relevant inter-laboratory QC samples for this WME reported
		20 primary samples. (note that PFAS NEMP recommends 1 in 10					in batch 1067666.
		for PFAS investigations)	0.1/02	N/+	Dimentity	N/C	Dispate
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	N/A	Primary laboratory received sample	N/A	Rinsate not required as only surface water was collected straight into the bottles
			OA/OC radiator finishing	N/A	Primary Jahoraton reactived as well	Vec	
		Trip Blanks - \geq 1 per esky containing samples for volatiles.		N/A	Primary laboratory received sample	Yes	QC403
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	Laboratory Reports	Yes		No	A laboratory duplicate for PAH/Phenols and TRH- Semivolatile fraction was not analysed, resulting in a non-
		, comment			1		conformance for frequency for this analysis. Not considered
					1		to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory
							field duplicates were analysed for PAH/ phenols and TRH
							semivolatile fraction and were DQI compliant.
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Surrogate Recoveries - all samples spiked	Laboratory Reports	Yes		Yes	
		where appropriate (e.g. chromatographic analysis of organics).					<u> </u>
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per	Laboratory Reports	Yes		No	A matrix spike for PAH/PhenoIs and TRH-Semivolatile
		process batch.					fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact
							upon assessment of accuracy, precision and comparability
							since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH
							semivolatile fraction and were DQI compliant.
Sample Preservation,	Samples appropriately preserved upon collection, stored and		Laboratory Reports	Yes		Yes	
Handling and Holding Times		requirements. Unless specific method indicates otherwise,					
		soil and water samples should be stored,					
L		transported and received by the laboratory at $\!<\!6^{\circ}\text{C}.$					<u> </u>
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported	Yes		Yes	
			data (e.g. ESDAT). 100% check of manually entered data		1		l i
			(e.g. field parameters, gauging data).				
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	Results Tables	Yes		Yes	
		investigation levels.					
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
			lab reports, review data etc)	Criteria Met?		Criteria Met?	
Field (Intra-laboratory)	Field Duplicate samples used assess the variability in analyte	e Analysed for same chemicals as primary					
Duplicate Sameling			ESDAT generated summary of relative percent difference (RPD) results for	N/A	Primary laboratory received sample	N/A	Relevant intra-laboratory QC samples for this WME reported in batch ES2404239.
Duplicate Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis.	sample. RPD <30% of mean conc. where both conc.	ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.	N/A	Primary laboratory received sample	N/A	Relevant intra-laboratory QC samples for this WME reported in batch ES2404239.
	concentration between samples collected from the sample	sample.	percent difference (RPD) results for	N/A	Primary laboratory received sample	N/A	
	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR	percent difference (RPD) results for	N/A	Primary laboratory received sample	N/A	
Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.	sample. RPD x30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR	percent difference (RPD) results for field duplicate samples.				reported in batch ES2404239.
	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for		Primary laboratory received sample RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc	N/A	
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative		RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted		reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory	sample. RPD 430% of mean conc. where both conc. >20 x LOR RPD 450% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD 430% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for		RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc		reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD To olimit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.) No	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter		reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD To olimit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.) No	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results.	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666.
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD To olimit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field) No	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results.	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD To olimit where both conc. < 10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.) No	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results.	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <80% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD to limit where both conc. <10 x LOR. Analyse concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR. RPD <30% of mean conc. where both conc. >20 x LOR. RPD 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	NO NO N/A	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <80% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD to limit where both conc. <10 x LOR. Analyse concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR. RPD <30% of mean conc. where both conc. >20 x LOR. RPD 50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	NO NO N/A	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <30% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyste concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	NO NO N/A	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	N/A N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. Analyse concentrations below LORs. Analyse concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR. RPD <30% of mean conc. where both conc. >20 x LOR. RPD on limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD do limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	N/A N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. <20 x LOR RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD oll limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD to Slow of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD to Slow of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD to limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix	sample. RPD <50% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD to Slow of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	N/A N/A Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD ×30% of mean conc. where both conc. >20 x LOR. RPD ×30% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory outplicates are used to test the precision of the laboratory measurements. Laboratory outplicates are used to test the precision of the laboratory on the laboratory of the laboratory. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD ×30% of mean conc. where both conc. >20 x LOR. RPD ×30% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes	reported in batch ES2404239. Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD ×30% of mean conc. where both conc. >20 x LOR. RPD ×30% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes N/A Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation of target analyte(s), spiking occurs prior to sample preparation of target analytes, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested and	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <30% of mean conc. where both conc. >10-20 x LOR. RPD on limit where both conc. <10 x LOR. Analyse concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A N/A N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <30% of mean conc. where both conc. >10-20 x LOR. RPD on limit where both conc. <10 x LOR. Analyse concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A N/A N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <30% of mean conc. where both conc. >10-20 x LOR. RPD on limit where both conc. <10 x LOR. Analyse concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A N/A N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to eases see the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No bimit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD down of mean conc. where both conc. 10-20 x LOR. RPD soll of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	No No N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes NO No Yes	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to eases see the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No ilmit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD to limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes N/A N/A N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analytes (5). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <50% of mean conc. where both conc. >220 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR Analysed for same chemicals as primary sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. >20 x LOR. RPD to solve of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	No No N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes NO No Yes	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this
Analysis Secondary Inter-laborator) Duplicate Sampling and Analysis Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision. Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analytes (5). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No imit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD No limit where both conc. <10 x LOR Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD stolk of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	No No N/A N/A Yes Yes Yes	RPD exceedance for iron (84%) and zinc (35%) in primary sample in MW3 and triplicate sample QC202. Both zinc results above adopted assessment criteria, and no adopted assessment criteria for iron, therefore does not alter interpretation of results. Primary laboratory received sample	N/A N/A Yes Yes Yes NO No Yes	Relevant inter-laboratory QC samples for this WME reported in batch 1067666. Rinsate not required as only surface water was collected straight into the bottles Mattix spike recovery not determined for zinc, nitrite and nitrate as N and total phosphorus as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this

Job Number:	S20102
Report Title:	Surface Water and Groundwater Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
Date:	9-Aug-24
	Emma Walsh
Verified By:	LITITIA VVAIGIT

SAMPLE DELIVERY GROUP (SDG):	ES2404239	SAMPLE DELIVERY GROUP (SDG):	ES2404752
Laboratory:	ALS	Laboratory:	ALS
Sample Dates:	15-Feb-24	Sample Dates:	20-Feb-24
Sample Media:	Water	Sample Media:	Water

Quality Assurance Process							
	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers	All equipment calibrated in accordance with	Calibration Certificates / Records	Yes		Yes	
Testing Method	specifications NATA accredited methods used for all analyses determined	manufacturers specifications. Primary and secondary laboratories to use	Laboratory Report	Yes		Yes	
Accreditation		NATA accredited methods for all analytes determined.					
Quality Control Sampling	Field QC sampling frequency in accordance with AS4482.1-	Field (Intra-laboratory) Duplicates - ≥ 1 in 20	QA/QC register (within field book)	Yes	QC103	N/A	Relevant intra-laboratory QC samples for this WME
Frequency	2005	primary samples. (note that PFAS NEMP recommends 1 in 10					reported in batch ES2304011.
		for PFAS investigations) Secondary (inter-laboratory) duplicates - ≥ 1 in	OA/OC register (within field book)	N/A	Relevant inter-laboratory QC samples for this WME reported	N/Δ	Relevant inter-laboratory QC samples for this WME reported
		20 primary samples.	The second second		in batch 1067666.		in batch 1067666.
		(note that PFAS NEMP recommends 1 in 10 for PFAS investigations)					
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	Yes	QC303	N/A	Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day
		ециртиент.					
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	Yes	QC404	N/A	No blank required due to limited number of samples (only MW4)
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10	Laboratory Reports	No	A laboratory duplicate for PAH/Phenols and TRH-	No	A laboratory duplicate for PAH/Phenols, TRH-Semivolatile
	2013	analyses or 1 per process batch.			Semivolatile fraction was not analysed, resulting in a non- conformance for frequency for this analysis. Not considered		fraction and dissolved mercury was not analysed, resulting in a non-conformance for frequency for this analysis. Not
					to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory		considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and
					field duplicates were analysed for PAH/ phenols and TRH		inter-laboratory field duplicates were analysed for PAH/
					semivolatile fraction and were DQI compliant.		phenols and TRH semivolatile fraction and were DQI compliant.
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Surrogate Recoveries - all samples spiked	Laboratory Reports	Yes		Yes	
		where appropriate (e.g. chromatographic analysis of organics).					
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per	Laboratory Reports	No	A matrix spike for PAH/Phenols and TRH-Semivolatile	No	A matrix spike for PAH/Phenols, TRH-Semivolatile fraction
		process batch.			fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact		and dissolved metals was not analysed, resulting in a non- conformance for frequency for this analysis. Not considered
					upon assessment of accuracy, precision and comparability		to impact upon assessment of accuracy, precision and
					since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH		comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH
					semivolatile fraction and were DQI compliant.		semivolatile fraction and were DQI compliant.
Sample Preservation,	Samples appropriately preserved upon collection, stored and	In accordance with laboratory specific method	Laboratory Reports	Yes		Yes	
Handling and Holding Times	transported, and analysed within holding times	requirements. Unless specific method indicates otherwise,					
		soil and water samples should be stored,					
		transported and received by the laboratory at < 6°C.					
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported	Yes		Yes	
			data (e.g. ESDAT). 100% check of manually entered data				
			(e.g. field parameters, gauging data).				
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	Results Tables	Yes		Yes	
		investigation levels.					
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
Field (Intra-laboratory)	Field Duplicate samples used assess the variability in analyte	Analysed for same chamicals as primary	lab reports, review data etc) ESDAT generated summary of relative	Criteria Met? Yes		Criteria Met?	Relevant intra-laboratory QC samples for this WME
Duplicate Sampling and	concentration between samples collected from the sample	sample.	percent difference (RPD) results for	165		IN/A	reported in batch ES2304011.
Analysis	location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed	RPD <30% of mean conc. where both conc. >20 x LOR	field duplicate samples.				
	samples for chemicals within their holding times may be	RPD <50% of mean conc. where both conc. 10-20 x LOR					
	undertaken to further assess precision level of precision.	RPD No limit where both conc. < 10 x LOR					
Secondary Inter-laborator)	Results are accurate and free from laboratory error.	A set send for come about leads on selection	ESDAT generated summary of relative				
Duplicate Sampling and Analysis		Analysed for same chemicals as primary	LODAT generated summary of relative	N/A	Relevant inter-laboratory QC samples for this WME reported	N/A	Relevant inter-laboratory QC samples for this WME reported
	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	sample.	percent difference (RPD) results for	N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666.	N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1067666.
	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR.		N/A	* ' ' '	N/A	
	to assess the accuracy of the analyte concentrations reported	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR.	percent difference (RPD) results for	N/A	* ' ' '	N/A	
	to assess the accuracy of the analyte concentrations reported by the primary laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for		in batch 1067666.		in batch 1067666.
	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR.	percent difference (RPD) results for field duplicate samples.	N/A	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment		
Field Rinsate Blank	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a		in batch 1067666. Rinsate not required as only one sample collected using
Field Rinsate Blank Preparation & Analysis	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	No	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day
Field Rinsate Blank	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment		in batch 1067666. Rinsate not required as only one sample collected using
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	No	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	No	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	No Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of similar where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of similar where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment	N/A N/A Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1087666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater.	N/A N/A Yes Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4)
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of similar where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater.	N/A N/A Yes Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater.	N/A N/A Yes Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment oriteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project	N/A N/A Yes Yes	in batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD store. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested and analysed scatcly like field samples. These blanks are used by the laboratory to assess contamination introduced during the laboratory to assess contamination introduced during	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD store. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD storm of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LOS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested and analysed scatcly like field samples. These blanks are used by the laboratory to assess contamination introduced during the laboratory to assess contamination introduced during	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD storm of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LOS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery Laboratory Method Blanks	to assess the accuracy of the analyte concentrations reponded by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory of seasess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes No Yes Yes Ves	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the
Field Rinsate Blank Preparation & Analysis Trip Blank Sampling and Analysis Laboratory Duplicates Laboratory Control Samples Certified Reference Material Surrogate Recovery Matrix Spike Recovery	to assess the accuracy of the analyte concentrations reported by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes No Yes Yes Ves	in batch 1067666. Total phosphorus (as P) was above the LOR. Not seen as a significant impact to results as no adopted assessment criteria for phosphorus in groundwater. Mattix spike recovery not determined for ammonia (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of	N/A N/A Yes Yes N/A Yes	In batch 1067666. Rinsate not required as only one sample collected using hydrasleeves- dedicated sampling equipment for the day No blank required due to limited number of samples (only MW4) Mattix spike recovery not determined for manganese as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to impact the accuracy of the

Job Number:	S20102
Report Title:	Surface Water and Groundwater Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
Date:	9-Aug-24
Verified By:	Emma Walsh
Date:	11-Sep-24

SAMPLE DELIVERY GROUP (SDG):	1067666	SAMPLE DELIVERY GROUP (SDG):	ES2422553
Laboratory:	Eurofins	Laboratory:	ALS
Sample Dates:	12-Feb-24	Sample Dates:	16-Jul-24
Sample Media:	Water	Sample Media:	Water

Quality Assurance	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
Process Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and	Borelogs, field sheets, COCs, data	Criteria Met? Yes		Criteria Met? Yes	
		forms used.	tables			Voc	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes	Laboratory Report	Yes		Yes	
		determined.					
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1- 2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples.	QA/QC register (within field book)	N/A	Primary laboratory received sample	N/A	Relevant intra-laboratory QC samples for this WME reported in batch ES2423038.
		(note that PFAS NEMP recommends 1 in 10					
		for PFAS investigations) Secondary (inter-laboratory) duplicates - ≥ 1 in	QA/QC register (within field book)	Yes	QC203	N/A	Relevant inter-laboratory QC samples for this WME reported
		20 primary samples.					in batch 1117968.
		(note that PFAS NEMP recommends 1 in 10 for PFAS investigations)					
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	N/A	Primary laboratory received sample	N/A	Rinsate not required as only surface water was collected straight into the bottles
		Trip Blanks - \geq 1 per esky containing samples for volatiles.	QA/QC register (within field book)	N/A	Primary laboratory received sample	Yes	QC405
	Laboratory QC analysis frequency in accordance with NEPC	Laboratory Duplicates - at least 1 in 10	Laboratory Reports	Yes		No	A laboratory duplicate for PAH/Phenols and TRH-
	2013	analyses or 1 per process batch.					Semivolatile fraction was not analysed, resulting in a non- conformance for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes	
		Surrogate Decayories all complex spiked	Laboratory Reports	Voc		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic	Laboratory Reports	Yes		Yes	
		analysis of organics). Laboratory Control Samples - at least 1 per	Laboratory Reports	Yes		Yes	
		process batch.		Yes		Yes	
Spends Press 1		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	Yes		No	A matrix spike for PAH/Phenols and TRH-Semivolatile fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements.	Laboratory Reports	Yes		Yes	
		Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.					
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT).	Yes		Yes	
			100% check of manually entered data				
			(e.g. field parameters, gauging data).				
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	Results Tables	Yes		Yes	
		investigation levels.	<u> </u>		<u></u>		
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
			lab reports, review data etc)	Criteria Met?		Criteria Met?	
Field (Intra-laboratory) Duplicate Sampling and	Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample	Analysed for same chemicals as primary sample.	ESDAT generated summary of relative percent difference (RPD) results for	N/A	Primary laboratory received sample	N/A	Relevant intra-laboratory QC samples for this WME reported in batch ES2423038.
Analysis	Coation and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.	RPD <30% of mean conc. where both conc. >20 x LOR RPD <50% of mean conc. where both conc. 10-20 x LOR RPD No limit where both conc. < 10 x LOR	field duplicate samples.				
Secondary Inter-laborator)	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary	ESDAT generated summary of relative	Yes		N/A	Relevant inter-laboratory QC samples for this WME reported
Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported	sample. RPD <30% of mean conc. where both conc.	percent difference (RPD) results for field duplicate samples.				in batch 1117968.
	by the primary laboratory.	>20 x LOR.					
		RPD <50% of mean conc. where both conc. 10-20 x LOR.					
Field Disease Plant	Cross contamination of samel-s does not	RPD no limit where both conc. < 10 x LOR.	ESDAT described	N/A	Driman laborator received country	N/A	Dineste not required as eath a set-
Field Rinsate Blank Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A	Primary laboratory received sample	N/A	Rinsate not required as only surface water was collected straight into the bottles
Trip Blank Sampling and	Cross contamination between samples does not occur in	Analyte concentrations below LORs.	ESDAT generated summary of field	N/A	Primary laboratory received sample	Yes	
Analysis	transit or as an artefact of the sampling handling procedure.		blank analytical results.				
Laboratory Duplicates	Laboratory duplicates are used to test the precision of the laboratory measurements.	As specified by laboratory.	Laboratory reports	Yes		Yes	
Laboratory Control Samples	method performance. In general these samples are similar in composition to environmental samples, and contain known	Dynamic recovery limits as specified by laboratory.	Laboratory reports	Yes		Yes	
Certified Reference Material	amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	N/A		N/A	
Surrogate Recovery	Surrogates are organic compounds that are similar in	Dynamic recovery limits as specified by	Laboratory reports	Yes		Yes	
	chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	laboratory.					
Matrix Spike Recovery	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	Recovery 70 - 130% or dynamic limits if specified by laboratory.	Laboratory reports	Yes		Yes	
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	Analyte concentrations below LORs.	Laboratory reports	Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources	Yes		Yes	

Job Number:	S20102
	Surface Water and Groundwater
Report Title:	Monitoring
Client:	ReDirect Recycling
Completed By:	Bec Chapple
Completed By: Date:	Bec Chapple 9-Aug-24

SAMPLE DELIVERY GROUP (SDG):	ES2423038	SAMPLE DELIVERY GROUP (SDG):	1117968
Laboratory:	ALS	Laboratory:	Eurofins
Sample Dates:	22-Jul-24	Sample Dates:	15-Jul-24
Sample Media:	Water	Sample Media:	Water

Objectives & Measure						
	Acceptance Criteria	Source of Information	Acceptance	Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
			Criteria Met?		Criteria Met?	
Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes	V .
All equipment calibrated in accordance with manufacturers	All equipment calibrated in accordance with	tables Calibration Certificates / Records	Yes		Yes	
specifications	manufacturers specifications.			 		
NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes	Laboratory Report	Yes	1	Yes	l l
Field OC compling for	determined.	04/00 mminter ()	Vec	0010/	N/A	Primary Johannia
Field QC sampling frequency in accordance with AS4482.1- 2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples.	QA/QC register (within field book)	Yes	QC104	N/A	Primary laboratory received sample
	(note that PFAS NEMP recommends 1 in 10			1		1
	for PFAS investigations) Secondary (inter-laboratory) duplicates - ≥ 1 in	QA/QC register (within field book)	N/A	Relevant inter-laboratory QC samples for this WME reported	Yes	QC204
	20 primary samples.			in batch 1117968.		l l
	(note that PFAS NEMP recommends 1 in 10			1		l l
	for PFAS investigations) Rinsate Blanks - ≥ 1 per day, per matrix per	QA/QC register (within field book)	Yes	QC304	N/A	Primary laboratory received sample
	equipment.			1		
	Trip Blanks - ≥ 1 per esky containing samples	QA/QC register (within field book)	Yes	QC405	N/A	Primary laboratory received sample
Laborator 22	for volatiles.					
Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	Laboratory Reports	No	A laboratory duplicate for PAH/Phenols and TRH- Semivolatile fraction was not analysed, resulting in a non-	Yes	
	, , ,			conformance for frequency for this analysis. Not considered		İ
				to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory		l l
				comparability since the intra-laboratory and inter-laboratory field duplicates were analysed for PAH/ phenols and TRH		l l
				semivolatile fraction and were DQI compliant.		
	Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes	 	Yes	1
	Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic	Laboratory Reports	Yes		Yes	
	analysis of organics).					
	Laboratory Control Samples - at least 1 per	Laboratory Reports	Yes	1	Yes	
	process batch. Matrix Spikes - at least 1 per matrix type per	Laboratory Reports	No	A matrix spike for PAH/Phenols and TRH-Semivolatile	Yes	
	process batch.			fraction was not analysed, resulting in a non-conformance		
				for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability		
				since the intra-laboratory and inter-laboratory field		l l
				duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.		
				DQI compliant.		
Samples appropriately preserved upon collection, stored and transported, and analysed within holding times		Laboratory Reports	Yes		Yes	
transported, and analysed within holding times	requirements. Unless specific method indicates otherwise,			1		
	soil and water samples should be stored,			1		
	transported and received by the laboratory at < 6°C.			1		
No errors in data transcription	6°C. Entry of field data verified by peer.	10% check of electronically imported	Yes		Yes	
		data (e.g. ESDAT).		1		
		100% check of manually entered data (e.g. field parameters, gauging data).		1		
Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes	
Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review		Notes/Details of Nonconformance	Acceptance	Notes/Details of Nonconformance
		lab reports, review data etc)	Criteria Met?		Criteria Met?	
Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample	e Analysed for same chemicals as primary sample	ESDAT generated summary of relative	Yes		N/A	Primary laboratory received sample
concentration between samples collected from the sample location and the reproducibility of the laboratory analysis.	sample. RPD <30% of mean conc. where both conc.	percent difference (RPD) results for field duplicate samples.		1		
Where required, resubmission of previously analysed	>20 x LOR	1		1		
samples for chemicals within their holding times may be undertaken to further assess precision level of precision.	RPD <50% of mean conc. where both conc. 10-20 x LOR			1		
	RPD No limit where both conc. < 10 x LOR]		1		ų l
Results are accurate and free from laboratory error.	Analysed for same chemicals as primary					<u> </u>
Secondary duplicate samples sent to a secondary laboratory			N/A	Relevant inter-laboratory QC samples for this WME reported	Yes	
to accept the accurrent of the	sample.	percent difference (RPD) results for	N/A	Relevant inter-laboratory QC samples for this WME reported in batch 1117968.	Yes	
to assess the accuracy of the analyte concentrations reported by the primary laboratory.	sample. d RPD <30% of mean conc. where both conc. >20 x LOR.		N/A		Yes	
	sample. d RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc.	percent difference (RPD) results for	N/A		Yes	
	sample. d RPD <30% of mean conc. where both conc. >20 x LOR.	percent difference (RPD) results for	N/A		Yes	
by the primary laboratory. Cross contamination of samples does not occur between	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field	N/A	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total	Yes	Primary laboratory received sample
by the primary laboratory.	sample. JRPD 430% of mean conc. where both conc. >20 xLOR. RPD 450% of mean conc. where both conc. 10-20 xLOR. RPD no limit where both conc. < 10 xLOR.	percent difference (RPD) results for field duplicate samples.		in batch 1117968.		Primary laboratory received sample
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. JRPD 430% of mean conc. where both conc. >20 xLOR. RPD 450% of mean conc. where both conc. 10-20 xLOR. RPD no limit where both conc. < 10 xLOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a		Primary laboratory received sample
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results.	No	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling	sample. JRPD 430% of mean conc. where both conc. >20 xLOR. RPD 450% of mean conc. where both conc. 10-20 xLOR. RPD no limit where both conc. < 10 xLOR.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field		in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted		Primary laboratory received sample Primary laboratory received sample
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	No	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field	No	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	sample. (RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the	sample. (RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known	sample. (RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results.	No Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	No Yes Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A No Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	No Yes Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A No Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	No Yes Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A No Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of initial where both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A NO Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A NO Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples of interest and are spiked into environmental samples prior to sample preparation and	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted	N/A N/A NO Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of LOR. RPD of LOR. RPD not limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater.	N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of third where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports	Yes Yes N/A	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater.	N/A N/A NO Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 1117968. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater.	N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used	N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes Yes Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of bill with the both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s), Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digestales are used to the laboratory to assess contamination introduced during the laboratory to assess contamination introduced during	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of bill with the both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory measurements. Laboratory measurements. Laboratory measurements. Laboratory measurements. Laboratory measurements. CRM samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of bill with the both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like feld samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of thirt where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes No Yes Yes Ves Ves	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A No Yes Yes Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during the laboratory to assess contamination introduced during	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of bill with the both conc. <10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes N/A Yes	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A NO Yes N/A Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to eassess the bias of a method in a given sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD of third where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analyte concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes No Yes Yes Ves Ves	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A No Yes Yes Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
by the primary laboratory. Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure. Laboratory duplicates are used to test the precision of the laboratory measurements. Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest. CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to eassess the bias of a method in a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	sample. RPD <50% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x LOR. Analyte concentrations below LORs. Analyte concentrations below LORs. As specified by laboratory. Dynamic recovery limits as specified by laboratory. As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results. Dynamic recovery limits as specified by laboratory. Recovery 70 - 130% or dynamic limits if specified by laboratory. Analytic concentrations below LORs.	percent difference (RPD) results for field duplicate samples. ESDAT generated summary of field blank analytical results. ESDAT generated summary of field blank analytical results. Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports Laboratory reports	Yes Yes No Yes Yes Ves Ves	in batch 111796B. Total oxidised nitrogen, total kjeldahl nitrogen and total nitrogen (as N) were reported above LOR. Not seen as a significant impact to interpretation of results asno adopted assessment criteria for these analytes in groundwater. Mattix spike recovery not determined for manganese and nitrite and nitrate (as N) as the background level greater than or equal to 4x spike level. An ananymous sample was used from a different project and therefore this is not expected to	N/A N/A No Yes Yes Yes	Primary laboratory received sample The RPD reported for nickel (32%) passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of

		Location Code		MW3		MW3	MW3		MW3	MW3		MW3	MW3	1	MW3	MW3		MW3	MW3		MW3	MW3		MW3	MW3	
		Field ID Date		QC101 08/02/2023	-	MW3 08/02/2023	QC201 08/02/2023	1	MW3 14/08/2023	QC102 14/08/2023	-	MW3 14/08/2023	QC202 14/08/2023	1	MW3 09/02/2024	QC103 09/02/2024	-	MW3 09/02/2024	QC203 09/02/2024		MW3 11/07/2024	QC104 11/07/2024	-	MW3 11/07/2024	QC204 11/07/2024	-
		Sample Type		Field_D		Normal	Interlab_D	1	Normal	Field_D	1	Normal	Interlab_D	1	Normal	Field_D	1	Normal	Interlab_D		Normal	Field_D		Normal	Interlab_D	
	1	Lab Report No.	ES2304011	ES2304011	RPD	ES2304011	316159	RPD	ES2327328	ES2327328	RPD	ES2327328	1020195	RPD	ES2404239	ES2404239	RPD	ES2404239	1067666	RPD	ES2423038	ES2423038	RPD	ES2423038	1117968	RPD
	Unit	EQL																								
Physical Parameters																										
Electrical Conductivity	μS/cm	1	34,200	-		34,200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids pH (Lab)	mg/L pH Units	0.01	22,200 7.09	-	-	22,200 7.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals	prionito	0.01	7.03		<u> </u>	7.05					 				1					-			-		_	
Arsenic (filtered)	mg/L	0.001	< 0.010	< 0.010	0	< 0.010	0.004	0	< 0.010	< 0.010	0	< 0.010	0.002	0	< 0.010	< 0.010	0	< 0.010	0.011	0	0.003	0.003	0	0.003	<0.01	0
Cadmium (filtered) Chromium (filtered)	mg/L	0.0001	<0.0010	<0.0010	0	<0.0010	0.0001	0	<0.0010	<0.0010	0	<0.0010	<0.0002	0	<0.0010	<0.0010	0	<0.0010	<0.0002	0	<0.0001	<0.0001	0	<0.0001	<0.002	0
Copper (filtered)	mg/L mg/L	0.001 0.001	<0.010 <0.010	<0.010 <0.010	0	<0.010	0.002 <0.001	0	<0.010	<0.010	0	<0.010	0.002 0.002	0	<0.010	<0.010	0	<0.010	0.005 0.006	0	<0.001 0.002	<0.001 <0.001	0 67	<0.001 0.002	<0.01	0
Iron (filtered)	mg/L	0.01	5.05	5.15	2	5.05	5.7	12	5.64	6.04	7	5.64	2.3	84	8.01	8.08	1	8.01	-	-	7.01	6.96	1	7.01	7.4	5
Lead (filtered)	mg/L	0.001	<0.010	<0.010	0	<0.010	0.001	0	<0.010	< 0.010	0	<0.010	0.002	0	<0.010	< 0.010	0	<0.010	0.005	0	<0.001	<0.001	0	<0.001	<0.01	0
Manganese (filtered) Mercury (filtered)	mg/L mg/L	0.001 0.00005	5.99 <0.0001	6.15 <0.0001	0	5.99 <0.0001	5.8 <0.00005	0	6.39 <0.0001	6.57 <0.0001	0	6.39 <0.0001	5.9 <0.0001	8	7.00 <0.0001	7.08 <0.0001	0	7.00 < 0.0001	<0.0001	- 0	6.79 <0.0001	6.80 <0.0001	0	6.79 <0.0001	7.4 <0.001	9
Nickel (filtered)	mg/L	0.000	0.191	0.167	13	0.191	0.18	6	0.207	0.205	1	0.207	0.18	14	0.191	0.197	3	0.191	0.16	4	0.200	0.200	0	0.200	0.20	0
Zinc (filtered)	mg/L	0.001	0.225	0.196	14	0.225	0.23	2	0.122	0.074	49	0.122	0.086	35	0.247	0.253	2	0.247	0.18	8	0.243	0.239	2	0.243	0.25	3
Inorganics	/	2.24				2.00					1	2.00			0.00		ļ	0.00			2.22			0.00		
Ammonia (as N) Nitrate (as N)	mg/L mg/L	0.01 0.01	0.22 <0.01	-	+ :	0.22 <0.01	-	-	0.29 <0.01	 -	+ :	0.29 <0.01	<0.02	- 0	0.29	 	 	0.29	0.10	108	0.28 0.01	-	-	0.28	<0.02	- 0
Nitrite (as N)	mg/L	0.01	<0.01	-	-	<0.01	-	-	<0.01	-	-	<0.01	< 0.02	0	<0.01	-	-	<0.01	<0.02	0	<0.01	-	-	<0.01	<0.02	0
Total Oxidised Nitrogen (as N)	mg/L	0.01	<0.01	0.02	67	<0.01	-	-	<0.01	-	-	<0.01	< 0.05	0	0.03	0.02	40	0.03	0.11	114	0.01	0.02	67	0.01	< 0.05	0
Total Kjeldahl Nitrogen Total Nitrogen (as N)	mg/L mg/L	0.1 0.1	1.0	1.3	26 26	1.0	0.5	- 67	0.4	-	-	0.4	0.5 0.5	22	0.9	0.9	0	0.9	1.3 1.4	36 43	0.6	0.6 0.6	0	0.6	1.0	50 50
Phosphorus (as P)	mg/L	0.01	0.12	0.10	18	0.12	0.8	148	0.02	-	 	0.4	-	-	0.9	0.09	12	0.08	1.4	-	0.04	0.04	0	0.04	-	-
Phosphate (as P)	mg/L	0.01	-	-		-	-	-	-	-	-	-	0.03	-	-	-	-		0.05	-	-	-	-	-	0.03	-
Ortho-phosphate (as P) Fluoride	mg/L	0.01	<0.01	-	-	<0.01	-		-	-	-	-	-	-	-	-	-		-		-	-		-	-	↓ - □
Sodium Absorption Ratio (filtered)	mg/L	0.1 0.01	1.2 37.8	-	-	1.2 37.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -
Major lons																										
Calcium (filtered)	mg/L	1	181	-	-	181	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride Magnesium (filtered)	mg/L mg/L	1	11,900 1,040	-	1 -	11,900 1,040	-	-	-	-	1 -	-	-	-	-	-	-	-	-		-	-	-	-	-	1
Potassium (filtered)	mg/L	1	1,040	-	 	1,040	-	-	 	 	 		-	1	 	 	1		-		-	-	-			+
Sulfate (as SO4) (filtered)	mg/L	1	907	-	-	907	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium (filtered) Anions Total	mg/L	1	5,980	-	-	5,980	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cations Total	meq/L meq/L	0.01 0.01	359 355	-	-	359 355	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
Ionic Balance	%	0.01	0.55	-	-	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity																										
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	mg/L mg/L	1 1	222 <1	-	-	222 <1	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L	1	<1	-	-	<1	-	-	-	-	 -	-	-	-	-	-	 	-	-	-	-	-	-		-	+ -
Total Alkalinity (as CaCO3)	mg/L	1	222	-	-	222	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hardness (as CaCO3) (filtered)	mg/L	1	4,730	-	-	4,730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BTEX Benzene	μg/L	1	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0
Toluene	μg/L	1	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0
Ethylbenzene	μg/L	1	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0	<2	<2	0	<2	<1	0
Xylene (m & p) Xylene (o)	μg/L μg/L	2	<2 <2	<2 <2	0	<2 <2	<2 <1	0	<2 <2	<2 <2	0	<2 <2	<2 <1	0	<2 <2	<2 <2	0	<2 <2	<2 <1	0	<2 <2	<2 <2	0	<2 <2	<2 <1	0
Total Xylene	μg/L	2	<2	<2	0	<2	-	-	<2	<2	0	<2	<3	0	<2	<2	0	<2	<3	0	<2	<2	0	<2	<3	0
Total BTEX	μg/L	1	<1	<1	0	<1	-	-	<1	<1	0	<1	-	-	<1	<1	0	<1	-	-	<1	<1	0	<1	-	-
Total Petroleum Hydrocarbons C6-C9 Fraction		40	20	20		-00	40	_	20	00		20	20		20	20		-00	20		00	00	0	00	-00	
C10-C14 Fraction	μg/L μg/L	10 50	<20 <50	<20 <50	0	<20 <50	<10 <50	0	<20 <50	<20 <50	0	<20 <50	<20 <50	0	<20 <50	<20 <50	0	<20 <50	<20 <50	0	<20 <50	<20 <50	0	<20 <50	<20 90	0 57
C15-C28 Fraction	μg/L	100	<100	<100	0	<100	140	33	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	810	800	1	810	400	68
C29-C36 Fraction	μg/L	50	<50	<50	0	<50	<100	0	<50	<50	0	<50	<100	0	<50	<50	0	<50	<100	0	<50	<50	0	<50	300	143
C10-C36 Fraction (Sum) Total Recoverable Hydrocarbons	μg/L	50	<50	<50	0	<50	140	95	<50	<50	0	<50	<100	0	<50	<50	0	<50	<100	0	810	800	1	810	790	2
C6-C10 Fraction	μg/L	10	<20	<20	0	<20	<10	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
C6-C10 Fraction minus BTEX (F1)	μg/L	10	<20	<20	0	<20	<10	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
>C10-C16 Fraction >C10-C16 Fraction minus naphthalene (F2)	μg/L μg/L	50 50	<100 <100	<100 <100	0	<100 <100	130 130	26 26	<100 <100	<100 <100	0	<100 <100	<50 <50	0	<100 <100	<100 <100	0	<100 <100	<50 <50	0	<100 <100	<100 <100	0	<100 <100	110 110	10 10
>C16-C34 Fraction	μg/L	100	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	400	480	18	400	600	40
>C34-C40 Fraction	μg/L	100	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	200	67
>C10-C40 Fraction (Sum) PAHs	μg/L	50	<100	<100	0	<100	130	26	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	400	480	18	400	910	78
Acenaphthene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Acenaphthylene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Anthracene Benz(a)anthracene	μg/L μg/L	1 1	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1 <1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1 <1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1 <1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0
Benzo(a)pyrene	μg/L μg/L	0.5	<0.5	<0.5	0	<0.5	<1	0	<0.5	<0.5	0	<0.5	<1	0	<0.5	<0.5	0	<0.5	<1	0	<0.5	<0.5	0	<0.5	<1	0
Benzo(b+j)fluoranthene	μg/L	1	<1.0	<1.0	0	<1.0	-	-	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Benzo(g,h,i)perylene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Benzo(b+j+k)fluoranthene Benzo(k)fluoranthene	μg/L μg/L	2	<1.0	<1.0	- 0	<1.0	<2	-	<1.0	<1.0	- 0	<1.0	<1	- 0	<1.0	<1.0	- 0	<1.0	- <1	- 0	<1.0	<1.0	- 0	<1.0	- <1	- 0
Chrysene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Dibenz(a,h)anthracene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Fluorene Fluorene	μg/L μg/L	1	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1 <1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1 <1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0
Indeno(1,2,3-c,d)pyrene	μg/L μg/L	1	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0	<1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0 <1.0	<1	0	<1.0 <1.0	<1.0 <1.0	0	<1.0	<1 <1	0
Naphthalene	μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1	0
Naphthalene (VOC)	μg/L	5	-		-	-	-	-			-	-	-	-	-	-	-	-	-		<5	<5	0	<5	<10	0
Phenanthrene Pyrene	μg/L μg/L	1	<1.0	<1.0	0	<1.0	<1	0	<1.0	<1.0	0	<1.0	<1 <1	0	<1.0	<1.0	0	<1.0 <1.0	<1 <1	0	<1.0	<1.0	0	<1.0	<1	0
Benzo(a)pyrene TEQ (Zero)	μg/L μg/L	0.5	<1.0 <0.5	<1.0 <0.5	0	<1.0 <0.5	<1	-	<1.0 <0.5	<1.0 <0.5	0	<1.0 <0.5	<1	-	<1.0 <0.5	<1.0 <0.5	0	<1.0 <0.5	<1	-	<1.0 <0.5	<1.0 <0.5	0	<1.0 <0.5	<1	-
Sum of Polycyclic aromatic hydrocarbons (PAH)) μg/L	0.5	<0.5	<0.5	0	<0.5	-	-	<0.5	<0.5	0	<0.5	<1	0	<0.5	<0.5	0	<0.5	<1	0	<0.5	<0.5	0	<0.5	<1	0
Benzo(a)pyrene TEQ	μg/L	5	-	-	-	-	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Positive PAHs Phenols	μg/L	1	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
2-Methylphenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-

Project: Surface Water and Groundwater Monitoring 2023 and 2024 Client: ReDirect Recycling Site Address: 24 Davis Road, Wetherill Park NSW

Table D2: RPD Analytical Results

	J
s⊘nv⊘r	sa

		Location Code	MW3	MW3																						
		Field ID	MW3	QC101	1	MW3	QC201	1 1	MW3	QC102	1	MW3	QC202	1	MW3	QC103		MW3	QC203	1	MW3	QC104	1	MW3	QC204	1
		Date	08/02/2023	08/02/2023	1	08/02/2023	08/02/2023	1 1	14/08/2023	14/08/2023	1	14/08/2023	14/08/2023	1	09/02/2024	09/02/2024		09/02/2024	09/02/2024	1	11/07/2024	11/07/2024	1	11/07/2024	11/07/2024	1
		Sample Type	Normal	Field_D	1	Normal	Interlab_D	1 [Normal	Field_D	1	Normal	Interlab_D	1	Normal	Field_D		Normal	Interlab_D	1	Normal	Field_D	1	Normal	Interlab_D	1
		Lab Report No.	ES2304011	ES2304011	RPD	ES2304011	316159	RPD	ES2327328	ES2327328	RPD	ES2327328	1020195	RPD	ES2404239	ES2404239	RPD	ES2404239	1067666	RPD	ES2423038	ES2423038	RPD	ES2423038	1117968	RPI
	Unit	EQL																								
2-Nitrophenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T
2,4-Dimethylphenol	μg/L	1	<1.0	-	-	<1.0	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-&4-Methylphenol (m&p-cresol)	μg/L	2	<2.0	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol	μg/L	1	<1.0	-	-	<1.0	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
alogenated Phenols					1																				1	1
2,4,5-Trichlorophenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,6-Trichlorophenol	μg/L	1	<1.0	-	٠.	<1.0	-	- 1	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	1
2,4-Dichlorophenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -
2,6-Dichlorophenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol	μg/L	1	<1.0	-	-	<1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	μg/L	2	<2.0	-	-	<2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Site Address: 24 Davis Road, Wetherill Park NSW

Table D3: Rinsate Analytical Table

Field ID QC301 QC302 QC303 QC304 Date 08/02/2023 09/02/2024 11/07/2024 14/08/2023 Sample Type Rinsate Rinsate Rinsate Rinsate Lab Report No. ES2304011 ES2327328 ES2404239 ES2423038 Unit FOI Arsenic (filtered) mg/L 0.001 Cadmium (filtered) mg/L 0.0001 < 0.0001 Chromium (filtered) ma/L 0.001 Copper (filtered) mg/L 0.001 Iron (filtered) mg/L 0.05 Lead (filtered) mg/L 0.001 Manganese (filtered) mg/L 0.001 0.038 Mercury (filtered) mg/L 0.0001 Nickel (filtered) mg/L 0.001 mg/L 0.005 norganics
Total Oxidised Nitrogen (as N) mg/L 0.01 Total Kjeldahl Nitrogen mg/L 0.1 0.1 Total Nitrogen (as N) mg/L 3.4 0.1 Phosphorus (as P) mg/L 0.02 BTEX Benzene μq/L μg/L Ethylbenzene μg/L Xylene (m & p) μg/L Xvlene (o) μg/L Total Xylene μg/L μg/L 1 otal Petroleum Hydrocarbons μg/L C6-C9 Fraction 20 C10-C14 Fraction μg/L 50 C15-C28 Fraction μg/L 100 C29-C36 Fraction μg/L 50 C10-C36 Fraction (Sum) μg/L 50 otal Recoverable Hydrocarbons C6-C10 Fraction μg/L 20 μg/L 20 >C10-C16 Fraction μg/L 100 >C10-C16 Fraction minus naphthalene (F2) μg/L 100 >C16-C34 Fraction μg/L 100 >C34-C40 Fraction >C10-C40 Fraction (Sum) μg/L 100 μg/L 100 <100 <100 PAHs Acenaphthene ua/L Acenaphthylene μg/L Anthracene μg/L <1.0 Benz(a)anthracene μg/L Benzo(a)pyrene μg/L 0.5 Benzo(b+j)fluoranthene μg/L Benzo(g,h,i)perylene μg/L Benzo(k)fluoranthene μg/L Chrysene μg/L 1 Dibenz(a,h)anthracene μg/L Fluoranthene μg/L Fluorene μg/L Indeno(1,2,3-c,d)pyrene μg/L Naphthalene μg/L Naphthalene (VOC) μg/L 5 Phenanthrene μg/L μg/L Benzo(a)pyrene TEQ (Zero) μg/L 0.5 < 0.5 < 0.5 < 0.5 Sum of Polycyclic aromatic hydrocarbons (PAH) μg/L 0.5

		Field ID Date le Type port No.	6/02/2023 Trip Spike	TSC	% Recovery	QC402 1/08/2023 Trip Spike ES2327328	TSC	% Recovery	QC503 5/02/2024 Trip Spike ES2403942	TSC	% Recovery	QC504 5/02/2024 Trip Spike ES2404239	TSC	% Recovery	QC505 8/07/2024 Trip Spike ES2423038	TSC	% Recovery	QC505 9/07/2024 Trip Spike ES2422553	TSC	% Recovery
	Unit	EQL																		
BTEXN																				
Benzene	μg/L	1	16	20	80	16	20	80	20	20	100	15	20	75	14	20	70	14	20	70
Toluene	μg/L	2	15	20	75	16	20	80	18	20	90	16	20	80	15	20	75	15	20	75
Ethylbenzene	μg/L	2	14	20	70	17	20	85	17	20	85	16	20	80	14	20	70	16	20	80
Xylene (m & p)	μg/L	2	15	20	75	18	20	90	16	20	80	17	20	85	14	20	70	16	20	80
Xylene (o)	μg/L	2	15	20	75	19	20	95	16	20	80	17	20	85	16	20	80	14	20	70
Total Xylene	μg/L	2	30	40	75	37	40	93	32	40	80	34	40	85	30	40	75	30	40	75
Total BTEX	μg/L	1	75	100	75	86	100	86	87	100	87	81	100	81	73	100	73	75	100	75
Naphthalene	μg/L	1	15	20	75	17	20	85	16	20	80	18	20	90	19	20	95	21	20	105

Appendix E: Laboratory Reports

Chain of Custody Documentation

Senversa Pt	v Ltd			Laboratory:	ALS NSW									Analysis R	equired		
ABN 89 132	a.com.au			Address: Contact: Phone:	Sample Receipt				,								Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.
Job Number	:	S2	0102	Purchase Order:			1	TALS	METALS	AND							Environmental Divisi
Project Nam	e:	Wetherill	Park WME	Quote No:	EN/103/21		1	3 ME	3 ME	NS A	ja .						Sydney Work Order Reference ES230401
Sampled By		Bec	Chapple	Turn Around Time:	Standard 7 D	Days		AH/	/PAH/8	ANIONS				(NW			Work Order Reference
Project Man			a Walsh	Page:	1	of 1	EXN	EXF	Ĭ.	NS,				AND	~		ES230401
Email Repor		Bec.Chapple@	senversa.com.au;	Phone/Mobile:	0408038593, 040		(TRH/BTEXN)	W-26 (TRH/BTEX/PAH/8 METALS)	RH/BT LS)	NT-14 (CATIONS, NUTRIENTS)	NT-11 (TN, TP)	EA015H (TDS)	EA025H (TSS)	(FE A			
Етпан Керог	110.	Sample Information		Priorie/Mobile.	Container Infor		1 E	3 (TF	E NON	4 (C	T) .	15H	25H				
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	W-18	N-2(W-27 (T PHENOI	155	1	EA0	EA0	EG005F		НОГР	
1	QC401	W	8/02/2023	AM	VOA	1	Х				-					+	
2	QC501	W	8/02/2023	AM	VOA	1	X									1	- - IIII III III III III III III III II
3	QC301	w	8/02/2023	AM	VS x2, N, UA, VSA	5		Х			X			X		1	Telephone: +61-2-8784 8555
4	MW1	W	8/02/2023	AM	P, VS x2, N, UA, VSA	6			X	X				X			_
5	MW2	W	8/02/2023	AM	P, VS x2, N, UA, VSA	6			×	X				X			
6	MW3	W	8/02/2023	AM	P, VS x2, N, UA, VSA	6			×	X				X			
7	MW4	W	8/02/2023	AM `	P, VS x2, N, UA, VSA	6			X	X				Х			
8	MW6	W	8/02/2023	AM	P, VS x2, N, UA, VSA	6			X	X				Х			
9	QC101	W	8/02/2023	AM	VS x2, N, UA, VSA	5		X			Х			X			
X	QC201	W	8/02/2023	AM	VS x2, N, UA, VSA	5											Please forward to Envirolab
											-						
						-		-	-					-			
				-		-	_	-	-	-					7		
						-	-	-	-							+	
-		-		-		1	-	-	-	-	_		-	-			
					-	-		-	-	-			-	-			
						-	-	-	-	-				-	_	-	
Total						47											
Total	test that proper field sam	unling propedures in	negordanae with S	nuveres standard pro-	and was and far project	47 Sampler Name:		Pag (Chapple		Signate		4	2111		Date:	8/02/2023
	is were used during the c			enversa standard proc	secures and/or project	Sampler Name.		Dec c	ларріе		Signati		区区	巻り		Date	6/02/2023
Relinquishe	d By:				Method of Shipment (if ap	plicable):			Receiv	red by:		~	_				
Name/Signat	ure:	Bec Chapple		Date: 8/2/23	Carrier / Reference #:				Name/	Signature	e:	TA	ンシ	fg			Date: 812123
Of:				Time: 12:00 PM	Date/Time:			-	Of:	· ·		-	4	/_			Time: 12-29
Name/Signati	ure:			Date: Time:	Carrier / Reference #: Date/Time:				Name/	Signature	9:						Date:
Name/Signat	Ite.			Date:	Carrier / Reference #:				Name/	Signature	2·						Date:
o.				Time:	Date/Time:				r territer	-igriatule	,,						Time:

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2304011

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Helen Simpson

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : helen.simpson@alsqlobal.com

Telephone : 02 8252 0000 Telephone : +61 2 8784 8555 Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 3

 Order number
 : --- Quote number
 : ES2022SENVER0004 (SY/103/22)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : Bec Chapple

Dates

Date Samples Received : 08-Feb-2023 12:20 Issue Date : 08-Feb-2023 Client Requested Due : 15-Feb-2023 Scheduled Reporting Date : 15-Feb-2023

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes : 2 Temperature : 15.56'C - Ice present

Receipt Detail : No. of samples received / analysed : 9 / 9

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample ID QC201 will be forwarded to Envirolab as per COC.
- samples 1 and 2 had a sample date of 08/02 on the COC but the bottle had 06/02.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 08-Feb-2023

Page

2 of 3 ES2304011 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determining tasks, that are included in the sampling default 00:00 on its provided, the laboratory and component Matrix: WATER Laboratory sample	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of sampling sampling date wi displayed in bra	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	WATER - EG005F Dissolved Metals by ICPAES	WATER - EP080 BTEXN	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - NT-14 Extended Water Suite B	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-26 TRH/BTEXN/PAH/8 Metals	WATER - W-27 TRH/BTEXN/PAH/Phenols/8 Metals
ID ES2304011-001	<i>time</i> 06-Feb-2023 00:00	QC401	≥ □	<u> </u>	≶ ⊢	<u> ≤ iii</u>	≤ F	≶ F	SF
ES2304011-001	06-Feb-2023 00:00	QC501	-	√			_		
				Ľ					
ES2304011-003	08-Feb-2023 00:00	QC301	✓		✓			✓	
ES2304011-004	08-Feb-2023 00:00	MW1	✓			✓			✓
ES2304011-005	08-Feb-2023 00:00	MW2	✓			✓			✓
ES2304011-006	08-Feb-2023 00:00	MW3	✓			1			✓
ES2304011-007	08-Feb-2023 00:00	MW4	✓			✓			✓
ES2304011-008	08-Feb-2023 00:00	MW6	1			✓			✓
ES2304011-009	08-Feb-2023 00:00	QC101	✓		✓			✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

: 08-Feb-2023 Issue Date

Page

3 of 3 ES2304011 Amendment 0 Work Order Client : SENVERSA PTY LTD

Requested Deliverables

Angus	Dibl	ey
-------	------	----

- *AU Certificate of Analysis - NATA (COA)	Email	angus.dibley@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	angus.dibley@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	angus.dibley@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	angus.dibley@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	angus.dibley@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	angus.dibley@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	angus.dibley@senversa.com.au

BEC CHAPPLE

- *AU Certificate of Analysis - NATA (COA)	Email	bec.chapple@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
- EDI Format - XTab (XTAB)	Email	bec.chapple@senversa.com.au

EMMA WALSH

- *AU Certificate of Analysis - NATA (COA)	Email	Emma.Walsh@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
- EDI Format - XTab (XTAB)	Email	Emma.Walsh@senversa.com.au

GRAEME MILLER

OTALINE INICELIT		
- *AU Certificate of Analysis - NATA (COA)	Email	graeme.miller@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	graeme.miller@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	graeme.miller@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	graeme.miller@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	graeme.miller@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	graeme.miller@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	graeme.miller@senversa.com.au

,		g
lan Wilson		
- *AU Certificate of Analysis - NATA (COA)	Email	ian.wilson@pkc.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ian.wilson@pkc.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ian.wilson@pkc.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ian.wilson@pkc.com.au
- Chain of Custody (CoC) (COC)	Email	ian.wilson@pkc.com.au
- EDI Format - ENMRG (ENMRG)	Email	ian.wilson@pkc.com.au
- EDI Format - ESDAT (ESDAT)	Email	ian.wilson@pkc.com.au

JIM BAILEY

- *AU Certificate of Analysis - NATA (COA)	Email	jim.bailey@pkc.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jim.bailey@pkc.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jim.bailey@pkc.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jim.bailey@pkc.com.au
- Chain of Custody (CoC) (COC)	Email	jim.bailey@pkc.com.au
- EDI Format - ESDAT (ESDAT)	Email	jim.bailey@pkc.com.au
- EDI Format - XTab (XTAB)	Email	jim.bailey@pkc.com.au

JONATHAN MANN

OUTATION MAIN		
- *AU Certificate of Analysis - NATA (COA)	Email	jonathan.mann@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jonathan.mann@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jonathan.mann@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jonathan.mann@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	jonathan.mann@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	jonathan.mann@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	jonathan.mann@senversa.com.au

SUPPLIER ACCOUNTS

- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
-----------------------------	-------	---------------------------------

CERTIFICATE OF ANALYSIS

Work Order : ES2304011

: SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ----

Client

C-O-C number : ----

Sampler : Bec Chapple

Site : --

Quote number : SY/103/22

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 11

Laboratory : Environmental Division Sydney

Contact : Helen Simpson

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 08-Feb-2023 12:20

Date Analysis Commenced : 08-Feb-2023

Issue Date : 14-Feb-2023 17:19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK067G: LOR raised for Total P on sample 4 due to sample matrix.
- EK059G: LOR raised for NOx on sample 4 due to sample matrix.
- EK058G: LOR raised for Nitrate on sample 4 due to sample matrix.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- EK057G: LOR raised for Nitrite due to sample matrix
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC401	QC501	QC301	MW1	MW2
		Sampli	ng date / time	06-Feb-2023 00:00	06-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304011-001	ES2304011-002	ES2304011-003	ES2304011-004	ES2304011-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit				7.74	7.70
EA006: Sodium Adsorption Ratio (SA	R)							
^ Sodium Adsorption Ratio		0.01	-				30.4	31.6
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm				25800	25700
EA016: Calculated TDS (from Electric	al Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L				16800	16700
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L				4020	3980
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L				<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L				<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L				916	815
Total Alkalinity as CaCO3		1	mg/L				916	815
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L				691	756
ED045G: Chloride by Discrete Analyse								
Chloride	16887-00-6	1	mg/L				8840	8800
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L				273	232
Magnesium	7439-95-4	1	mg/L				810	826
Sodium	7440-23-5	1	mg/L				4430	4590
Potassium	7440-09-7	1	mg/L				25	21
EG005(ED093)F: Dissolved Metals by	ICP-AES							
Iron	7439-89-6	0.05	mg/L			<0.05	4.97	0.40
Manganese	7439-96-5	0.01	mg/L			<0.01	0.92	0.96
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L			<0.001	0.011	0.004
Cadmium	7440-43-9	0.0001	mg/L			<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L			<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L			<0.001	0.015	0.011
Lead	7439-92-1	0.001	mg/L			<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L			<0.001	0.023	0.006

Page : 4 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC401	QC501	QC301	MW1	MW2
		Sampli	ing date / time	06-Feb-2023 00:00	06-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304011-001	ES2304011-002	ES2304011-003	ES2304011-004	ES2304011-005
· ·				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICF	P-MS - Continued							
Zinc	7440-66-6	0.005	mg/L			<0.005	0.012	0.008
EG035F: Dissolved Mercury by F	IMS							
Mercury	7439-97-6	0.0001	mg/L			<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L				0.8	0.7
EK055G: Ammonia as N by Discr								
Ammonia as N	7664-41-7	0.01	mg/L				0.71	0.52
EK057G: Nitrite as N by Discrete			J. J.					
Nitrite as N	14797-65-0	0.01	mg/L				<0.10	<0.01
		0.0.	g				0.10	0.01
EK058G: Nitrate as N by Discrete Nitrate as N	14797-55-8	0.01	mg/L				<0.10	0.03
			Hig/L				~0.10	0.03
EK059G: Nitrite plus Nitrate as N Nitrite + Nitrate as N	(NOx) by Discrete Anal		ma/l			<0.01	<0.10	0.03
		0.01	mg/L			<0.01	<0.10	0.03
EK061G: Total Kjeldahl Nitrogen	By Discrete Analyser					2.4		
Total Kjeldahl Nitrogen as N		0.1	mg/L			<0.1	0.9	1.0
EK062G: Total Nitrogen as N (TK	N + NOx) by Discrete An							
^ Total Nitrogen as N		0.1	mg/L			<0.1	0.9	1.0
EK067G: Total Phosphorus as P	by Discrete Analyser							
Total Phosphorus as P		0.01	mg/L			<0.01	<0.05	0.06
EK071G: Reactive Phosphorus as	s P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L				<0.01	0.02
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L				282	280
ø Total Cations		0.01	meq/L				274	280
ø Ionic Balance		0.01	%				1.52	0.09
EP075(SIM)A: Phenolic Compour	nds							
Phenol	108-95-2	1.0	μg/L				<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	μg/L				<1.0	<1.0
2-Methylphenol	95-48-7	1.0	μg/L				<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	μg/L				<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	μg/L				<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	μg/L				<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	μg/L				<1.0	<1.0

Page : 5 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC401	QC501	QC301	MW1	MW2
		Sampli	ng date / time	06-Feb-2023 00:00	06-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304011-001	ES2304011-002	ES2304011-003	ES2304011-004	ES2304011-005
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compound	ds - Continued							
2.6-Dichlorophenol	87-65-0	1.0	μg/L				<1.0	<1.0
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L				<1.0	<1.0
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L				<1.0	<1.0
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L				<1.0	<1.0
Pentachlorophenol	87-86-5	2.0	μg/L				<2.0	<2.0
EP075(SIM)B: Polynuclear Aromat	ic Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L			<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	μg/L			<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L			<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L			<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L			<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L			<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L			<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	μg/L			<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	μg/L			<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	μg/L			<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L			<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L			<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocar	rbons	0.5	μg/L			<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L			<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydro	carbons							
C6 - C9 Fraction		20	μg/L	<20		<20	<20	<20
C10 - C14 Fraction		50	μg/L			<50	<50	<50
C15 - C28 Fraction		100	μg/L			<100	<100	<100
C29 - C36 Fraction		50	μg/L			<50	<50	<50
^ C10 - C36 Fraction (sum)		50	μg/L			<50	<50	<50
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20		<20	<20	<20
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20		<20	<20	<20

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC401	QC501	QC301	MW1	MW2
		Sampli	ng date / time	06-Feb-2023 00:00	06-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304011-001	ES2304011-002	ES2304011-003	ES2304011-004	ES2304011-005
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued					
>C10 - C16 Fraction		100	μg/L			<100	<100	<100
>C16 - C34 Fraction		100	μg/L			<100	<100	<100
>C34 - C40 Fraction		100	μg/L			<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	μg/L			<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L			<100	<100	<100
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	16	<1	<1	<1
Toluene	108-88-3	2	μg/L	<2	15	<2	<2	<2
Ethylbenzene	100-41-4	2	μg/L	<2	14	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	15	<2	<2	<2
ortho-Xylene	95-47-6	2	μg/L	<2	15	<2	<2	<2
^ Total Xylenes		2	μg/L	<2	30	<2	<2	<2
^ Sum of BTEX		1	μg/L	<1	75	<1	<1	<1
Naphthalene	91-20-3	5	μg/L	<5	17	<5	<5	<5
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%			28.1	31.6	30.2
2-Chlorophenol-D4	93951-73-6	1.0	%			58.8	62.4	60.6
2.4.6-Tribromophenol	118-79-6	1.0	%			60.4	70.1	71.9
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%			69.7	68.8	73.0
Anthracene-d10	1719-06-8	1.0	%			94.2	98.3	93.6
4-Terphenyl-d14	1718-51-0	1.0	%			80.2	85.6	80.2
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	99.7	97.1	89.9	96.8	100
Toluene-D8	2037-26-5	2	%	99.4	98.2	94.5	99.5	98.4
4-Bromofluorobenzene	460-00-4	2	%	97.7	94.7	88.7	96.6	96.5

Page : 7 of 11
Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW4	MW6	QC101	
		Sampli	ng date / time	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2304011-006	ES2304011-007	ES2304011-008	ES2304011-009	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.09	7.72	8.06		
EA006: Sodium Adsorption Ratio (SAR	2)							
^ Sodium Adsorption Ratio		0.01	-	37.8	21.4	6.70		
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	34200	19900	2310		
EA016: Calculated TDS (from Electrical	L Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	22200	12900	1500		
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	4730	3980	586		
ED037P: Alkalinity by PC Titrator			_					1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	222	1110	834		
Total Alkalinity as CaCO3		1	mg/L	222	1110	834		
ED041G: Sulfate (Turbidimetric) as SO-	4.2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	907	280	44		
ED045G: Chloride by Discrete Analyse			J					
Chloride	16887-00-6	1	mg/L	11900	6680	341		
ED093F: Dissolved Major Cations	.000. 00 0		J					
Calcium	7440-70-2	1	mg/L	181	299	50		
Magnesium	7439-95-4	1	mg/L	1040	786	112		
Sodium	7440-23-5	1	mg/L	5980	3100	373		
Potassium	7440-09-7	1	mg/L	14	35	6		
EG005(ED093)F: Dissolved Metals by I	CP-AES							
Iron	7439-89-6	0.05	mg/L	5.05	1.22	<0.05	5.15	
Manganese	7439-96-5	0.01	mg/L	5.99	5.45	0.04	6.15	
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.010	0.005	<0.001	<0.010	
Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0001	<0.0001	<0.0010	
Chromium	7440-47-3	0.001	mg/L	<0.010	<0.001	<0.001	<0.010	
Copper	7440-50-8	0.001	mg/L	<0.010	0.005	0.003	<0.010	
Lead	7439-92-1	0.001	mg/L	<0.010	<0.001	<0.001	<0.010	
Nickel	7440-02-0	0.001	mg/L	0.191	0.021	<0.001	0.167	

Page : 8 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW4	MW6	QC101	
		Samplii	ng date / time	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2304011-006	ES2304011-007	ES2304011-008	ES2304011-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-M	IS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.225	<0.005	<0.005	0.196	
EG035F: Dissolved Mercury by FIM	S							
Mercury		0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.2	1.6	1.8		
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.22	0.34	0.02		
EK057G: Nitrite as N by Discrete A						<u> </u>		
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.25		
EK058G: Nitrate as N by Discrete A	nalyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.01	1.00		
EK059G: Nitrite plus Nitrate as N (N		vser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	1.25	0.02	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser		J					
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	1.1	0.4	1.3	
EK062G: Total Nitrogen as N (TKN +	NOv) by Discrete An	alveor	J					
^ Total Nitrogen as N		0.1	mg/L	1.0	1.1	1.6	1.3	
EK067G: Total Phosphorus as P by			3					
Total Phosphorus as P		0.01	mg/L	0.12	0.09	0.09	0.10	
EK071G: Reactive Phosphorus as P) by discrete englyser		9-2	•··-		U.U.	•	
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	<0.01		
EN055: Ionic Balance	14203-44-2	0.01	mg/L	-0.01	-0.01	10.01		
Ø Total Anions		0.01	meg/L	359	216	27.2		
Ø Total Cations		0.01	meg/L	355	215	28.1		
Ø Ionic Balance		0.01	%	0.55	0.25	1.61		
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0	<1.0		
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	<1.0		
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0	<1.0		
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0	<2.0		
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0	<1.0		
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0	<1.0		
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0	<1.0		

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW4	MW6	QC101	
		Sampli	ng date / time	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2304011-006	ES2304011-007	ES2304011-008	ES2304011-009	
				Result	Result	Result	Result	
EP075(SIM)A: Phenolic Compounds	- Continued							
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0	<1.0		
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	<1.0		
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0	<1.0		
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0	<1.0		
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0	<2.0		
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20	<20	
C10 - C14 Fraction		50	μg/L	<50	<50	<50	<50	
C15 - C28 Fraction		100	μg/L	<100	<100	<100	<100	
C29 - C36 Fraction		50	μg/L	<50	<50	<50	<50	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	<20	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20	

Page : 10 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW4	MW6	QC101	
		Sampli	ng date / time	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	08-Feb-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2304011-006	ES2304011-007	ES2304011-008	ES2304011-009	
				Result	Result	Result	Result	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	<100	
>C16 - C34 Fraction		100	μg/L	<100	<100	<100	<100	
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	<100	<100	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	<100	<100	<100	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	<1	<1	<1	
Toluene	108-88-3	2	μg/L	<2	<2	<2	<2	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	<2	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	<2	
^ Total Xylenes		2	μg/L	<2	<2	<2	<2	
^ Sum of BTEX		1	μg/L	<1	<1	<1	<1	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%	32.6	29.6	31.5	27.0	
2-Chlorophenol-D4	93951-73-6	1.0	%	62.2	60.2	63.8	52.4	
2.4.6-Tribromophenol	118-79-6	1.0	%	84.6	78.9	70.0	62.2	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	77.8	77.0	81.0	66.8	
Anthracene-d10	1719-06-8	1.0	%	109	102	104	84.4	
4-Terphenyl-d14	1718-51-0	1.0	%	94.4	88.4	87.4	70.8	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	99.0	102	95.4	98.2	
Toluene-D8	2037-26-5	2	%	104	100.0	95.8	101	
4-Bromofluorobenzene	460-00-4	2	%	98.9	95.0	92.1	95.6	

Page : 11 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2304011** Page : 1 of 11

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Telephone : +61 2 8784 8555

Project : S20102 Wetherill Park WME Date Samples Received : 08-Feb-2023

Site :--- Issue Date : 14-Feb-2023
Sampler : Bec Chapple No. of samples received : 9

Sampler : Bec Chapple No. of samples received : 9
Order number : ---- No. of samples analysed : 9

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11 Work Order : ES2304011

 Client
 : SENVERSA PTY LTD

 Project
 · S20102 Wetherill Park WME

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005(ED093)F: Dissolved Metals by ICP-AES	ES2304011007	MW4	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK057G: Nitrite as N by Discrete Analyser	ES2303855001	Anonymous	Nitrite as N	14797-65-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	С	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Dissolved Metals by ICP-AES	1	24	4.17	5.00	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: 🗴	= Holding	itime breach :	; ✓ = Within	holding time.
---------------	-----------	----------------	--------------	---------------

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA00	95-P)							
MW1,	MW2,	08-Feb-2023				08-Feb-2023	08-Feb-2023	✓
MW3,	MW4,							
MW6								

Page : 3 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EA006: Sodium Adsorption Ratio (SAR) Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2. MW3. MW4, MW6 EA010P: Conductivity by PC Titrator Clear Plastic Bottle - Natural (EA010-P) MW1. MW2. 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW3. MW4. MW6 EA065: Total Hardness as CaCO3 Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2, MW3. MW4, MW6 ED037P: Alkalinity by PC Titrator Clear Plastic Bottle - Natural (ED037-P) MW1, MW2, 08-Feb-2023 08-Feb-2023 22-Feb-2023 MW3, MW4, MW6 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA Clear Plastic Bottle - Natural (ED041G) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1. MW2, MW3. MW4. MW6 ED045G: Chloride by Discrete Analyser Clear Plastic Bottle - Natural (ED045G) MW1, MW2, 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW3, MW4, MW6 ED093F: Dissolved Major Cations Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2, MW3. MW4, MW6 EG005(ED093)F: Dissolved Metals by ICP-AES Clear Plastic Bottle - Nitric Acid; Filtered (EG005F) 07-Aug-2023 QC301, MW1, 08-Feb-2023 09-Feb-2023 MW2. MW3. MW4. MW6. QC101

Page : 4 of 11 Work Order : ES2304011

Matrix: WATER					Evaluation	: x = Holding time	breach ; ✓ = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
QC301,	MW1,	08-Feb-2023				08-Feb-2023	07-Aug-2023	✓
MW2,	MW3,							
MW4,	MW6,							
QC101								
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
QC301,	MW1,	08-Feb-2023				09-Feb-2023	08-Mar-2023	✓
MW2,	MW3,							
MW4,	MW6,							
QC101	,							
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P)								
MW1,	MW2,	08-Feb-2023				08-Feb-2023	08-Mar-2023	✓
MW3,	MW4,							<u> </u>
MW6	,							
EK055G: Ammonia as N by Discrete Analyser								!
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	MW2,	08-Feb-2023				13-Feb-2023	08-Mar-2023	1
MW3,	MW4,							'
MW6	,							
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MW1,	MW2,	08-Feb-2023				08-Feb-2023	10-Feb-2023	✓
MW3,	MW4,							
MW6								
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
QC301,	MW1,	08-Feb-2023				13-Feb-2023	08-Mar-2023	✓
MW2,	MW3,							
MW4,	MW6,							
QC101								
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
MW6		08-Feb-2023	09-Feb-2023	08-Mar-2023	✓	09-Feb-2023	08-Mar-2023	✓
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
QC301,	MW1,	08-Feb-2023	09-Feb-2023	08-Mar-2023	✓	10-Feb-2023	08-Mar-2023	✓
MW2,	MW3,							
MW4								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
QC101		08-Feb-2023	10-Feb-2023	08-Mar-2023	√	11-Feb-2023	08-Mar-2023	✓

Page : 5 of 11
Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: x = Holding time breach ; √ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Pute systematical Properties Fireflycition Pute systematical Properties Fireflycition

ntainer / Client Sample ID(s) 67G: Total Phosphorus as P by Discrete Analyser Plastic Bottle - Sulfuric Acid (EK067G)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
Plastic Bottle - Sulfuric Acid (EK067G)							
Plastic Bottle - Sulfuric Acid (EK067G)							
C301, MW1,	08-Feb-2023	09-Feb-2023	08-Mar-2023	✓	10-Feb-2023	08-Mar-2023	✓
W2, MW3,							
W4, MW6							
Plastic Bottle - Sulfuric Acid (EK067G)							
C101	08-Feb-2023	10-Feb-2023	08-Mar-2023	✓	11-Feb-2023	08-Mar-2023	✓
71G: Reactive Phosphorus as P by discrete analyser							
Plastic Bottle - Natural (EK071G)							
W1, MW2,	08-Feb-2023				08-Feb-2023	10-Feb-2023	✓
W3, MW4,							
W6							
75(SIM)A: Phenolic Compounds							
er Glass Bottle - Unpreserved (EP075(SIM))							
W1, MW2,	08-Feb-2023	10-Feb-2023	15-Feb-2023	1	13-Feb-2023	22-Mar-2023	✓
W3, MW4,							
W6							
75(SIM)B: Polynuclear Aromatic Hydrocarbons							
er Glass Bottle - Unpreserved (EP075(SIM))							
C301, MW1,	08-Feb-2023	10-Feb-2023	15-Feb-2023	✓	13-Feb-2023	22-Mar-2023	✓
W2, MW3,							
W4, MW6,							
C101							
80/071: Total Petroleum Hydrocarbons							
er Glass Bottle - Unpreserved (EP071)							
C301, MW1,	08-Feb-2023	10-Feb-2023	15-Feb-2023	✓	13-Feb-2023	22-Mar-2023	✓
W2, MW3,							
W4, MW6,							
C101							
er VOC Vial - Sulfuric Acid (EP080)							
C401	06-Feb-2023	09-Feb-2023	20-Feb-2023	✓	09-Feb-2023	20-Feb-2023	✓
er VOC Vial - Sulfuric Acid (EP080)							
C301, MW1,	08-Feb-2023	09-Feb-2023	22-Feb-2023	✓	09-Feb-2023	22-Feb-2023	✓
W2, MW3,							
		I			I		
W4, MW6,							

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: **WATER**Evaluation: × = Holding time breach; ✓ = Within holding time.

Method		Sample Date	E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarb	bons - NEPM 2013 Fractions								
Amber Glass Bottle - Unpreserved (EP07	1)								
QC301,	MW1,	08-Feb-2023	10-Feb-2023	15-Feb-2023	✓	13-Feb-2023	22-Mar-2023	✓	
MW2,	MW3,								
MW4,	MW6,								
QC101									
Amber VOC Vial - Sulfuric Acid (EP080)									
QC401		06-Feb-2023	09-Feb-2023	20-Feb-2023	✓	09-Feb-2023	20-Feb-2023	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
QC301,	MW1,	08-Feb-2023	09-Feb-2023	22-Feb-2023	✓	09-Feb-2023	22-Feb-2023	✓	
MW2,	MW3,								
MW4,	MW6,								
QC101									
EP080: BTEXN									
Amber VOC Vial - Sulfuric Acid (EP080)									
QC401,	QC501	06-Feb-2023	09-Feb-2023	20-Feb-2023	✓	09-Feb-2023	20-Feb-2023	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
QC301,	MW1,	08-Feb-2023	09-Feb-2023	22-Feb-2023	✓	09-Feb-2023	22-Feb-2023	✓	
MW2,	MW3,								
MW4,	MW6,								
QC101									

Page : 7 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: √ = Quality Control frequency within specification

Matrix: WATER Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification;											
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification				
Analytical Methods	Method	ОC	Regular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)											
Alkalinity by Auto Titrator	ED037-P	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Ammonia as N by Discrete analyser	EK055G	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Conductivity by Auto Titrator	EA010-P	5	43	11.63	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Mercury by FIMS	EG035F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-AES	EG005F	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Fluoride by Auto Titrator	EK040P	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Major Cations - Dissolved	ED093F	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	34	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite as N by Discrete Analyser	EK057G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	7	0.00	10.00	3£	NEPM 2013 B3 & ALS QC Standard				
pH by Auto Titrator	EA005-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Reactive Phosphorus as P-By Discrete Analyser	EK071G	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Phosphorus as P By Discrete Analyser	EK067G	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
TRH - Semivolatile Fraction	EP071	0	7	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard				
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Laboratory Control Samples (LCS)											
Alkalinity by Auto Titrator	ED037-P	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Ammonia as N by Discrete analyser	EK055G	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Conductivity by Auto Titrator	EA010-P	4	43	9.30	8.33	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-AES	EG005F	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Fluoride by Auto Titrator	EK040P	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Major Cations - Dissolved	ED093F	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	34	8.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	√	NEPM 2013 B3 & ALS QC Standard				
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
pH by Auto Titrator	EA005-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	22	27.27	15.00	✓	NEPM 2013 B3 & ALS QC Standard				
			-				•				

Page : 8 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: **WATER**Evaluation: **×** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Total Phosphorus as P By Discrete Analyser	EK067G	6	23	26.09	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	2	21	9.52	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	43	2.33	1.67	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	34	8.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	24	4.17	5.00	se	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by Auto Titrator	EK040P	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	34	8.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	7	0.00	5.00	3£	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	7	0.00	5.00	se	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Calculated TDS (from Electrical Conductivity)	EA016	WATER	In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)

Page : 10 of 11 Work Order : ES2304011

Analytical Methods	Method	Matrix	Method Descriptions
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

Page : 11 of 11 Work Order : ES2304011

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

QUALITY CONTROL REPORT

Page

: 1 of 11

Work Order : **ES2304011**

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Helen Simpson

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : +61 2 8784 8555

Project : S20102 Wetherill Park WME Date Samples Received : 08-Feb-2023

Order number Date Analysis Commenced : 08-Feb-2023

Order number : ---- Date Analysis Commenced : 08-Feb-2023

C-O-C number ---- Issue Date 14-Feb-2023

Sampler ; Bec Chapple

Site · ----

Quote number : SY/103/22

No. of samples received : 9
No. of samples analysed : 9

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	solved Metals by ICP-A	NES (QC Lot: 4859853)							
ES2303873-004	Anonymous	EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.04	115	No Limit
		EG005F: Iron	7439-89-6	0.05	mg/L	0.10	0.10	0.0	No Limit
ES2303873-014	Anonymous	EG005F: Manganese	7439-96-5	0.01	mg/L	0.28	0.30	4.1	0% - 20%
EG005(ED093)F: Dis	solved Metals by ICP-A	NES (QC Lot: 4859854)							
ES2304011-006	MW3	EG005F: Manganese	7439-96-5	0.01	mg/L	5.99	6.28	4.6	0% - 20%
		EG005F: Iron	7439-89-6	0.05	mg/L	5.05	5.29	4.7	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 48599	14)							
ES2303998-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.25	8.21	0.5	0% - 20%
ES2304011-007	MW4	EA005-P: pH Value		0.01	pH Unit	7.72	7.73	0.1	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC L	ot: 4859910)							
ES2303998-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	488	486	0.4	0% - 20%
ES2303799-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1240	1230	0.6	0% - 20%
ES2303915-029	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	112	111	1.0	0% - 20%
ES2303915-015	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3	3	0.0	No Limit
ES2304011-007	MW4	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	19900	19800	0.4	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot:	4859913)							
ES2303934-009	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	14	13	10.4	0% - 50%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	14	13	10.4	0% - 50%
ES2304011-007	MW4	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1110	927	17.7	0% - 20%

Page : 3 of 11
Work Order : ES2304011

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity	by PC Titrator (QC Lot:	4859913) - continued							
ES2304011-007	MW4	ED037-P: Total Alkalinity as CaCO3		1	mg/L	1110	927	17.7	0% - 20%
ED041G: Sulfate (T	urbidimetric) as SO4 2- b	by DA (QC Lot: 4860151)							
ES2304009-005	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	10	10	0.0	0% - 50%
ED045G: Chloride b	by Discrete Analyser (Q	C Lot: 4860150)							
ES2304029-010	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	13	13	0.0	0% - 50%
ES2304009-005	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	5	5	0.0	No Limit
ED093F: Dissolved	Major Cations (QC Lot:	4859850)			_				
ES2303873-013	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	30	30	0.0	0% - 20%
	,	ED093F: Magnesium	7439-95-4	1	mg/L	41	40	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	493	482	2.1	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	38	38	0.0	0% - 20%
ES2303640-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	248	252	1.3	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	66	66	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1	1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	8	8	0.0	No Limit
ED093F: Dissolved	Major Cations (QC Lot:	4859855)							
ES2304011-008	MW6	ED093F: Calcium	7440-70-2	1	mg/L	50	48	3.3	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	112	111	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	373	389	4.2	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	6	5	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC I	Lot: 4859851)							
ES2303640-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.538	0.546	1.6	0% - 20%
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.034	0.034	0.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	782	786	0.5	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	2.72	2.74	0.7	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	2.03	2.04	0.7	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	134	129	3.5	0% - 20%
EG035F: Dissolved	Mercury by FIMS (QC L	.ot: 4859849)							
ES2304011-004	MW1	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK040P: Fluoride b	y PC Titrator (QC Lot: 4	859908)							
ES2303799-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.1	<0.1	0.0	No Limit
ES2304011-007	MW4	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.6	1.6	0.0	0% - 50%
EK055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 4861210)							
ES2303838-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.01	0.0	No Limit
ES2303866-007	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.02	93.9	No Limit
EK055G: Ammonia	as N by Discrete Analys								
ES2304011-008	MW6	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit

Page : 4 of 11
Work Order : ES2304011

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK057G: Nitrite as N	by Discrete Analyser (QC I								
ES2303855-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	4.04	4.01	0.9	0% - 20%
EW2300593-011	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4861209)							
ES2303838-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.61	0.61	0.0	0% - 20%
ES2303866-007	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4861211)							
ES2304011-008	MW6	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.25	1.18	6.0	0% - 20%
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4864095)							
ME2300270-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.02	0.0	No Limit
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 4861208)							
ES2304011-003	QC301	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ana	, ,							
ES2303697-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	4.7	4.6	2.7	0% - 20%
EW2300556-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	232	246	5.7	0% - 50%
EK067G: Total Phos	phorus as P by Discrete Ana	lyser (QC Lot: 4861207)							
ES2303955-004	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	296	316	6.4	0% - 20%
ES2304011-003	QC301	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.03	101	No Limit
EK067G: Total Phos	phorus as P by Discrete Ana	lyser (QC Lot: 4864091)							
ES2303697-005	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.46	0.44	4.7	0% - 20%
EW2300556-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	37.0	37.9	2.6	0% - 20%
EK071G: Reactive Pl	hosphorus as P by discrete a	analyser (QC Lot: 4860147)							
ES2303957-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2304009-005	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK071G: Reactive Pl	hosphorus as P by discrete a	analyser (QC Lot: 4860152)							
ES2304011-008	MW6	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.02	67.3	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC I	Lot: 4860105)							
ES2303866-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2304011-003	QC301	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 4860105)							
ES2303866-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2304011-003	QC301	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 4860105)								
ES2303866-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3			_	_		
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit

Page : 5 of 11 Work Order : ES2304011

Sub-Matrix: WATER	ub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080: BTEXN (QC	Lot: 4860105) - continued									
ES2303866-001	Anonymous	EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit	
ES2304011-003	QC301	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit	
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit	

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 48	359853)							
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	93.5	82.0	114
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	100	81.0	113
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 48	359854)							
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	97.0	82.0	114
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	98.2	81.0	113
EA005P: pH by PC Titrator (QCLot: 4859914)					-			
EA005-P: pH Value			pH Unit		4 pH Unit	101	98.8	101
ZAGGOT : pri valido					7 pH Unit	100	99.2	101
EA010P: Conductivity by PC Titrator (QCLot: 4859910)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	220 µS/cm	93.5	89.9	110
EACTO-1 : Electrical Conductivity @ 25 C		·	μο/οπ	<1	2100 µS/cm	101	90.2	111
ED037P: Alkalinity by PC Titrator (QCLot: 4859913)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	92.9	81.0	111
ED037-F. Total Alkalillity as CaCO3			mg/L		50 mg/L	111	80.0	120
EDO440: Culfata (Tunkidimatuia) aa CO40 ku DA (OC) at	4000454)				00g/_		00.0	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot:	14808-79-8	1	ma/l	<1	25 mg/L	108	82.0	122
ED041G: Sulfate as SO4 - Turbidimetric	14000-79-0	'	mg/L	<1	500 mg/L	108	82.0	122
				1	300 mg/L	107	02.0	122
ED045G: Chloride by Discrete Analyser (QCLot: 4860150)		4		-11	50 mm m //	405	00.0	407
ED045G: Chloride	16887-00-6	1	mg/L	<1 <1	50 mg/L 1000 mg/L	105 100	80.9 80.9	127 127
				<u> </u>	1000 Hig/L	100	60.9	127
ED093F: Dissolved Major Cations (QCLot: 4859850)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	97.3	80.0	114
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	102	90.0	116
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	105	82.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	104	85.0	113
ED093F: Dissolved Major Cations (QCLot: 4859855)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	97.2	80.0	114
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	104	90.0	116
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	112	82.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	104	85.0	113
EG020F: Dissolved Metals by ICP-MS (QCLot: 4859851)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.9	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.6	84.0	110

Page : 7 of 11
Work Order : ES2304011

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 485	9851) - continued							
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.0	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	94.7	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	95.2	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.0	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.4	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 4859	849)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	99.6	83.0	105
EK040P: Fluoride by PC Titrator (QCLot: 4859908)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	96.4	82.0	116
EK055G: Ammonia as N by Discrete Analyser (QC	Lot: 4861210)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	110	90.0	114
EK055G: Ammonia as N by Discrete Analyser (QC	ot: 4861212)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	110	90.0	114
EK057G: Nitrite as N by Discrete Analyser (QCLot	· 4860146)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	98.4	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discret			···g-		***************************************	2211		
EK059G: Nitrite + Nitrate as N	e Analyser (QCLOL 46	0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113
			9.2	0.01	0.0 mg/2	.00	00	
EK059G: Nitrite plus Nitrate as N (NOx) by Discret EK059G: Nitrite + Nitrate as N	e Analyser (QCLot: 48	0.01	mg/L	<0.01	0.5 mg/L	104	91.0	113
			IIIg/L	~0.01	0.5 mg/L	104	91.0	113
EK059G: Nitrite plus Nitrate as N (NOx) by Discret				<0.01	0.5	05.0	04.0	440
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	95.9	91.0	113
EK061G: Total Kjeldahl Nitrogen By Discrete Analy		•						
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1 <0.1	10 mg/L	97.9 105	69.0 70.0	101 118
				<0.1	1 mg/L 5 mg/L	105	70.0	130
	(00) ((00)			40.1	J Hig/L	103	70.0	130
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	ser (QCLot: 4864092)	0.1	ma/l	<0.1	10 mg/l	100	69.0	101
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1 <0.1	10 mg/L 1 mg/L	100	69.0 70.0	101 118
				<0.1	5 mg/L	104	70.0	130
EVOCTO: Tatal Phase have as B by Bisserts Aught	(OCL -t: 4004007)			.0.1	o mg/L	101	7 0.0	100
EK067G: Total Phosphorus as P by Discrete Analyse EK067G: Total Phosphorus as P	ser (QCLot: 4861207)	0.01	mg/L	<0.01	4.42 mg/L	97.7	71.3	126
EROOTO. Total Phosphorus as P		0.01	IIIg/L	<0.01	0.442 mg/L	96.4	71.3	126
				<0.01	1 mg/L	98.7	71.3	126
EK067G: Total Phosphorus as P by Discrete Analys	ser (OCL of: 4864094)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	92.7	71.3	126
Enter 6. Total i Hospitoras as i				<0.01	0.442 mg/L	95.2	71.3	126
				<0.01	1 mg/L	99.5	71.3	126

Page : 8 of 11 Work Order : ES2304011

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK071G: Reactive Phosphorus as P by discrete a	analyser (QCLot: 486014)	7)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	98.8	85.0	117	
EK071G: Reactive Phosphorus as P by discrete a	analyser (QCLot: 486015	2)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	100.0	85.0	117	
EP075(SIM)A: Phenolic Compounds (QCLot: 485	59814)								
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	30.5	24.5	61.9	
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	61.4	52.0	90.0	
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 μg/L	55.1	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 μg/L	51.2	44.0	88.0	
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 μg/L	67.1	48.0	100	
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	49.3	49.0	99.0	
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	68.7	53.0	105	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	68.7	57.0	105	
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	64.3	53.0	99.0	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	71.6	50.0	106	
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	70.2	51.0	105	
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	84.8	10.0	95.0	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ns (QCLot: 4859814)								
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	69.4	50.0	94.0	
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	71.4	63.6	114	
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	71.4	62.2	113	
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	74.4	63.9	115	
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	100	62.6	116	
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	94.9	64.3	116	
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	100	63.6	118	
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	101	63.1	118	
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	80.2	64.1	117	
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	84.4	62.5	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 μg/L	91.4	61.7	119	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	72.8	63.0	115	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	79.4	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	81.2	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	81.6	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	81.4	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QCL	.ot: 4859815)								
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	84.4	53.7	97.0	
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	78.0	63.3	107	
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	91.6	58.3	120	

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 48	60105)								
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	98.9	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 4859815)							
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	83.4	53.9	95.5	
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	80.3	57.8	110	
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	93.6	50.5	115	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 4860105)							
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	101	75.0	127	
EP080: BTEXN (QCLot: 4860105)									
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	107	70.0	122	
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	108	69.0	123	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	109	70.0	120	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	104	69.0	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	106	72.0	122	
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	109	70.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G005(ED093)F: [Dissolved Metals by ICP-AES (QCLot: 4859854)							
ES2304011-007	MW4	EG005F: Manganese	7439-96-5	1 mg/L	# Not Determined	70.0	130	
D041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4860151)							
ES2304009-005	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	117	70.0	130	
D045G: Chloride	by Discrete Analyser (QCLot: 4860150)							
ES2304009-005	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	107	70.0	130	
G020F: Dissolve	d Metals by ICP-MS (QCLot: 4859851)							
ES2304011-005	MW2	EG020A-F: Arsenic	7440-38-2	1 mg/L	108	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	92.8	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	93.8	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	101	70.0	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	107	70.0	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	101	70.0	130	

Page : 10 of 11 Work Order : ES2304011

Sub-Matrix: WATER	Alatrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable Lii	mits (%)			
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 4859851) - continued									
ES2304011-005	MW2	EG020A-F: Zinc	7440-66-6	1 mg/L	95.7	70.0	130			
G035F: Dissolve	d Mercury by FIMS (QCLot: 4859849)									
ES2304011-003	QC301	EG035F: Mercury	7439-97-6	0.01 mg/L	96.4	70.0	130			
K040P: Fluoride	by PC Titrator (QCLot: 4859908)									
ES2303799-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	93.2	70.0	130			
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 4861210)									
ES2303838-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	118	70.0	130			
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 4861212)									
ES2304011-008	MW6	EK055G: Ammonia as N	7664-41-7	1 mg/L	109	70.0	130			
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 4860146)									
ES2303855-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	# Not	70.0	130			
					Determined					
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 486	1209)								
ES2303838-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	117	70.0	130			
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 486	1211)								
ES2304011-008	MW6	EK059G: Nitrite + Nitrate as N		0.5 mg/L	93.2	70.0	130			
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 486	4095)								
ME2300270-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.6	70.0	130			
K061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4861208)									
ES2304011-004	MW1	EK061G: Total Kjeldahl Nitrogen as N		25 mg/L	101	70.0	130			
K061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4864092)									
ES2304009-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	100	70.0	130			
K067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 4861207)									
ES2304011-004	MW1	EK067G: Total Phosphorus as P		5 mg/L	99.5	70.0	130			
K067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 4864091)									
ES2304009-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	95.6	70.0	130			
K071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 4860147)								
ES2303957-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	93.3	70.0	130			
K071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 4860152									
ES2304011-008	MW6	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	98.1	70.0	130			
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 4860105)									
ES2303866-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	80.0	70.0	130			
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 4860105)								

Page : 11 of 11 Work Order : ES2304011

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 4860105) - continued					
ES2303866-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	81.9	70.0	130
EP080: BTEXN (C	QCLot: 4860105)						
ES2303866-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	81.6	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	83.9	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	87.4	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	82.4	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	86.5	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	87.2	70.0	130

Chain of Custody Documentation

ABN 89 132 231 380 Senversa Pty Ltd Sampler: I attest that proper field sampling procedures in accordance with Senversa standard procedures and/or project Job Number: specifications were used during the collection of these samples: Relinquished By: Lab ID roject Manager mail Report To: oject Name: mpled By: me/Signature: ne/Signature: | Time: | Date/Time: | Date/Tim Sample ID SW2 SW1 Bec Chapple Sample Information Matrix * 8 × Wetherill Park WME Emma Walsh Bec Chapple S20102 10/02/2023 10/02/2023 Date Address: Contact: Page: Phone/Mobile Quote No: Purchase Order: Date Turn Around Time Laboratory: Date: 10/2/23 Time: 9:15 AM Time AM AM ALS NSW Sample Receipt Method of Shipment (if applicable) Date/Time:)ate/Time: arrier / Reference # arrier / Reference rier / Reference #: Type / Code EN/103/21 0408038593, 0404011544 Container Information Standard 7 Days of 1 Sampler Name: **Total Bottles** 12 W-27 (TRH/BTEX/PAH/8 METALS/ PHENOLS) Bec Chapple NT-11 (TN, TP) Received by: EA015H (TDS) EA025H (TSS) Signature: EG005F (FE AND MN) P Analysis Required Sydney
Work Order Reference
ES2304342 Telephone: +61-2-8784 8555 **Environmental Division** Date: HOLD Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc. Date: 10/1/23 roxig

Checked by: V = VOA Vial Hydochloric Acid (HCI) Preserved; VS = VOA Vial Sulphuric Preserved. VSA = Sulphuric Preserved Amber Glass; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Sulphuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; UA = Unpreserved Amber Glass; L=Lugol's odine preserved white plastic bottle; SW= sulfuric acid preserved wide mouth glass

ved; S = Sodium Hydroxide Preserved Plastic; STH = Sodium thiosulfate

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2304342

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : khaleda.ataei@alsqlobal.com

Telephone : 02 8252 0000 Telephone : + 61 2 8784 8555
Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 2

 Order number
 : --- Quote number
 : EM2020SENVER0016 (EN/103/21)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : BEC CHAPPLE

Dates

Date Samples Received : 10-Feb-2023 10:30 Issue Date : 10-Feb-2023 Client Requested Due : 16-Feb-2023 Scheduled Reporting Date : 16-Feb-2023

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes : --- Temperature : 8.6' C - Ice present

Receipt Detail : FOAM ESKY No. of samples received / analysed : 2 / 2

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 10-Feb-2023 Issue Date

Page

2 of 2 ES2304342 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determin tasks, that are inclif no sampling default 00:00 on	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, the date of sampling date wi	ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EA025H Suspended Solids - Standard Level	WATER - EG005F Dissolved Metals by ICPAES	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - W-27 TRH/BTEXN/PAH/Phenols/8 Metals
ES2304342-001	10-Feb-2023 00:00	SW1	✓	✓	1	✓	✓
ES2304342-002	10-Feb-2023 00:00	sw2	✓	✓	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

BEC CHAPPLE

BEO OTIAL I EE		
 *AU Certificate of Analysis - NATA (COA) 	Email	bec.chapple@senversa.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
EMMA WALSH		
 *AU Certificate of Analysis - NATA (COA) 	Email	Emma.Walsh@senversa.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

CERTIFICATE OF ANALYSIS

Work Order : **ES2304342**

: SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ---C-O-C number : ----

Client

Sampler · BEC CHAPPLE

Site : ---

Quote number : EN/103/21

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Khaleda Ataei

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : + 61 2 8784 8555

Date Samples Received : 10-Feb-2023 10:30

Date Analysis Commenced : 13-Feb-2023

Issue Date : 16-Feb-2023 16:15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 6

Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	sw2	 	
		Sampli	ing date / time	10-Feb-2023 00:00	10-Feb-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2304342-001	ES2304342-002	 	
				Result	Result	 	
EA015: Total Dissolved Solids dried at	t 180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	240	352	 	
EA025: Total Suspended Solids dried	at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	86	69	 	
EG005(ED093)F: Dissolved Metals by	ICP-AES						
Iron	7439-89-6	0.05	mg/L	0.06	0.06	 	
Manganese	7439-96-5	0.01	mg/L	0.01	<0.01	 	
EG020F: Dissolved Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.002	0.002	 	
Copper	7440-50-8	0.001	mg/L	0.006	0.003	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.001	0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	 	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.36	0.50	 	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	1.0	 	
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser					
^ Total Nitrogen as N		0.1	mg/L	0.7	1.5	 	
EK067G: Total Phosphorus as P by Di	screte Analyser						
Total Phosphorus as P		0.01	mg/L	0.06	0.19	 	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0	 	
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	 	
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0	 	
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	 	

Page : 4 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	sw2	 	
		Samplii	ng date / time	10-Feb-2023 00:00	10-Feb-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2304342-001	ES2304342-002	 	
				Result	Result	 	
EP075(SIM)A: Phenolic Compounds	- Continued						
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0	 	
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons						
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	μg/L	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	 	
EP080/071: Total Petroleum Hydroca	rbons						
C6 - C9 Fraction		20	μg/L	<20	<20	 	
C10 - C14 Fraction		50	μg/L	<50	<50	 	
C15 - C28 Fraction		100	μg/L	<100	<100	 	
C29 - C36 Fraction		50	μg/L	<50	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	 	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns				
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	 	
(F1)							
>C10 - C16 Fraction		100	μg/L	<100	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	<100	 	

Page : 5 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)	Sample ID			SW1	sw2	 	
		Sampli	ng date / time	10-Feb-2023 00:00	10-Feb-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2304342-001	ES2304342-002	 	
				Result	Result	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued				
>C34 - C40 Fraction		100	μg/L	<100	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	 	
^ >C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L	<100	<100	 	
EP080: BTEXN							
Benzene	71-43-2	1	μg/L	<1	<1	 	
Toluene	108-88-3	2	μg/L	<2	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	 	
^ Total Xylenes		2	μg/L	<2	<2	 	
^ Sum of BTEX		1	μg/L	<1	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	<5	 	
EP075(SIM)S: Phenolic Compound Su	rrogates						
Phenol-d6	13127-88-3	1.0	%	30.1	26.2	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	59.0	53.2	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	55.7	58.8	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	65.1	62.5	 	
Anthracene-d10	1719-06-8	1.0	%	74.7	79.4	 	
4-Terphenyl-d14	1718-51-0	1.0	%	68.6	85.7	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	132	117	 	
Toluene-D8	2037-26-5	2	%	124	113	 	
4-Bromofluorobenzene	460-00-4	2	%	120	106	 	

Page : 6 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

ALS

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)						
Compound	CAS Number	Low	High						
EP075(SIM)S: Phenolic Compound Surrogates									
Phenol-d6	13127-88-3	10	44						
2-Chlorophenol-D4	93951-73-6	14	94						
2.4.6-Tribromophenol	118-79-6	17	125						
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	20	104						
Anthracene-d10	1719-06-8	27	113						
4-Terphenyl-d14	1718-51-0	32	112						
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	71	137						
Toluene-D8	2037-26-5	79	131						
4-Bromofluorobenzene	460-00-4	70	128						

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2304342** Page : 1 of 7

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : EMMA WALSH
 Telephone
 : + 61 2 8784 8555

 Project
 : S20102 Wetherill Park WME
 Date Samples Received
 : 10-Feb-2023

 Site
 : --- Issue Date
 : 16-Feb-2023

Site :---- Issue Date
Sampler : BEC CHAPPLE No. of samples received

Sampler : BEC CHAPPLE No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7
Work Order : ES2304342

 Client
 : SENVERSA PTY LTD

 Project
 : S20102 Wetherill Park WME

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count Rate (%) Qua		e (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	2	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	5	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H)								
SW1,	sw2	10-Feb-2023				14-Feb-2023	17-Feb-2023	✓
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H)								
SW1,	sw2	10-Feb-2023				14-Feb-2023	17-Feb-2023	✓
EG005(ED093)F: Dissolved Metals by ICP-AES								
Clear Plastic Bottle - Nitric Acid; Filtered (EG005F)								
SW1,	sw2	10-Feb-2023				16-Feb-2023	09-Aug-2023	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
SW1,	sw2	10-Feb-2023				15-Feb-2023	09-Aug-2023	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
SW1,	sw2	10-Feb-2023				16-Feb-2023	10-Mar-2023	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	alyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
SW1,	sw2	10-Feb-2023				15-Feb-2023	10-Mar-2023	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
SW1,	sw2	10-Feb-2023	14-Feb-2023	10-Mar-2023	✓	15-Feb-2023	10-Mar-2023	✓

Page : 3 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: **WATER**Evaluation: × = Holding time breach; ✓ = Within holding time.

WAILK					Lvaldatioi	i. • - Holding time	Dicacii, • - with	ir noluling till
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discrete Analy	yser							
Clear Plastic Bottle - Sulfuric Acid (EK067G)								
SW1,	sw2	10-Feb-2023	14-Feb-2023	10-Mar-2023	✓	15-Feb-2023	10-Mar-2023	✓
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
SW1,	sw2	10-Feb-2023	13-Feb-2023	17-Feb-2023	✓	14-Feb-2023	25-Mar-2023	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	s							
Amber Glass Bottle - Unpreserved (EP075(SIM))								
SW1,	sw2	10-Feb-2023	13-Feb-2023	17-Feb-2023	✓	14-Feb-2023	25-Mar-2023	✓
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
SW1,	sw2	10-Feb-2023	13-Feb-2023	17-Feb-2023	✓	14-Feb-2023	25-Mar-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
SW1		10-Feb-2023	14-Feb-2023	24-Feb-2023	✓	14-Feb-2023	24-Feb-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
sw2		10-Feb-2023	14-Feb-2023	24-Feb-2023	✓	15-Feb-2023	24-Feb-2023	✓
EP080/071: Total Recoverable Hydrocarbons - NEF	PM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
SW1,	sw2	10-Feb-2023	13-Feb-2023	17-Feb-2023	✓	14-Feb-2023	25-Mar-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)		40 5 1 0000	44 5 1 0000	04 5-6 0000		44 5 1 0000	04 5-6 0000	
SW1		10-Feb-2023	14-Feb-2023	24-Feb-2023	✓	14-Feb-2023	24-Feb-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)		10-Feb-2023	14-Feb-2023	24-Feb-2023		15-Feb-2023	24-Feb-2023	
sw2		10-Feb-2023	14-Feb-2023	24-160-2023	✓	15-reb-2023	24-Feb-2023	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)		40 = 1	44 5 1 0000	04 5-6 0000		44.5.1.0000	04 5-6 0000	
SW1		10-Feb-2023	14-Feb-2023	24-Feb-2023	✓	14-Feb-2023	24-Feb-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)		40 F-h 0000	44 Fab 2000	24-Feb-2023		45 Feb 2000	24-Feb-2023	
sw2		10-Feb-2023	14-Feb-2023	24-Feb-2023	√	15-Feb-2023	24-Feb-2023	✓

Page : 4 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		0	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	oc -	Regular	Actual	Expected	Evaluation	quality control opcomeditori
aboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	2	50.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
AH/Phenols (GC/MS - SIM)	EP075(SIM)	0	2	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	2	16	12.50	10.00	√	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	5	0.00	10.00	se	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-AES	EG005F	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	√	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	17	17.65	15.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	3	16	18.75	15.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
issolved Mercury by FIMS	EG035F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-AES	EG005F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Evaluation Method QC Analytical Methods Regular Actual Expected Matrix Spikes (MS) - Continued Dissolved Mercury by FIMS 19 5.26 5.00 NEPM 2013 B3 & ALS QC Standard EG035F 1 Dissolved Metals by ICP-AES 1 2 NEPM 2013 B3 & ALS QC Standard 50.00 5.00 1 EG005F Dissolved Metals by ICP-MS - Suite A 1 20 EG020A-F 5.00 5.00 1 NEPM 2013 B3 & ALS QC Standard Nitrite and Nitrate as N (NOx) by Discrete Analyser 1 16 6.25 5.00 NEPM 2013 B3 & ALS QC Standard EK059G 1 2 PAH/Phenols (GC/MS - SIM) 0 EP075(SIM) 0.00 5.00 NEPM 2013 B3 & ALS QC Standard × Total Kjeldahl Nitrogen as N By Discrete Analyser 1 17 5.88 NEPM 2013 B3 & ALS QC Standard 5.00 EK061G 1 Total Phosphorus as P By Discrete Analyser 1 16 6.25 5.00 1 NEPM 2013 B3 & ALS QC Standard EK067G TRH - Semivolatile Fraction 0 5 NEPM 2013 B3 & ALS QC Standard 0.00 5.00 EP071 × TRH Volatiles/BTEX 1 17 NEPM 2013 B3 & ALS QC Standard EP080 5.88 5.00 1

Page : 6 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)

Page : 7 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary
			GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a
			sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Preparation Methods TKN/TP Digestion	Method EK061/EK067	Matrix WATER	Method Descriptions In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
			In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated

QUALITY CONTROL REPORT

Work Order : **ES2304342** Page : 1 of 7

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : + 61 2 8784 8555

Project : \$20102 Wetherill Park WME Date Samples Received : 10-Feb-2023

Order number Date Analysis Commenced : 13-Feb-2023

C-O-C number ---- Issue Date · 16-Feb-2023

Sampler ; BEC CHAPPLE

Site · ----

Quote number : EN/103/21

No. of samples received : 2

No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	ssolved Metals by ICP-A	AES (QC Lot: 4869828)							
ES2304342-002	sw2	EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG005F: Iron	7439-89-6	0.05	mg/L	0.06	0.06	0.0	No Limit
EA015: Total Dissol	ved Solids dried at 180	± 5 °C (QC Lot: 4870476)							
ES2304252-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	4550	4510	0.8	0% - 20%
ES2304358-003	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	38100000 μg/L	38800	2.0	0% - 20%
EA025: Total Suspe	nded Solids dried at 10	4 ± 2°C (QC Lot: 4870477)							
ES2304252-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	11	14	26.3	No Limit
ES2304358-003	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	270000 μg/L	262	3.0	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 4869827)							
ES2304488-011	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES2304342-002	sw2	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit

Page : 3 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035F: Dissolved	Mercury by FIMS (Q	C Lot: 4869826)							
ES2304488-008	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	0.0004	0.0004	0.0	No Limit
ES2304342-002	sw2	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK059G: Nitrite plu	ıs Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 4869687)							
ES2304232-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.25	1.22	2.9	0% - 20%
ES2304352-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK061G: Total Kjeld	dahl Nitrogen By Disc	crete Analyser (QC Lot: 4869684)							
ES2304342-002	sw2	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	0.8	14.3	No Limit
ES2304232-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	4.8	4.4	10.0	0% - 20%
EK067G: Total Phos	sphorus as P by Disc	rete Analyser (QC Lot: 4869683)							
ES2304342-002	sw2	EK067G: Total Phosphorus as P		0.01	mg/L	0.19	0.17	7.2	0% - 50%
ES2304232-003	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	3.85	3.79	1.4	0% - 20%
EP080/071: Total Pe	etroleum Hydrocarbo	ns (QC Lot: 4868872)							
ES2304473-004	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2304473-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocar	bons - NEPM 2013 Fractions (QC Lot: 4868872)							
ES2304473-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2304473-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 4868872)								
ES2304473-004	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2304473-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 4 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 48	69828)							
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	108	82.0	114
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	91.1	81.0	113
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot:	4870476)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	94.6	87.0	109
				<10	293 mg/L	99.5	75.2	126
				<10	2340 mg/L	102	83.0	124
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot	4870477)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	95.3	83.0	129
				<5	1000 mg/L	96.3	82.0	110
				<5	987 mg/L	93.6	83.0	118
EG020F: Dissolved Metals by ICP-MS (QCLot: 4869827)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	89.6	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	89.5	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.3	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	88.4	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	90.6	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	86.8	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	88.2	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 4869826)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	95.2	83.0	105
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	ser (QCLot: 48	(69687)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	106	91.0	113
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(Q0	CL of: 4869684)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	96.4	69.0	101
2.100.0. rotal rystal in ridingen as it				<0.1	1 mg/L	94.4	70.0	118
				<0.1	5 mg/L	102	70.0	130
EK067G: Total Phosphorus as P by Discrete Analyser(QC	Lot: 4869683)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	93.5	71.3	126
				<0.01	0.442 mg/L	90.4	71.3	126
				<0.01	1 mg/L	98.7	71.3	126
EP075(SIM)A: Phenolic Compounds (QCLot: 4866073)								
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	34.6	24.5	61.9
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	74.2	52.0	90.0
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 μg/L	66.3	51.0	91.0

Page : 5 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	aboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P075(SIM)A: Phenolic Compounds (QCLot: 48)	66073) - continued							
P075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 μg/L	62.1	44.0	88.0
P075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 μg/L	72.5	48.0	100
P075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	67.3	49.0	99.0
P075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	72.9	53.0	105
P075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	69.2	57.0	105
P075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	71.1	53.0	99.0
P075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	67.4	50.0	106
P075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	69.7	51.0	105
P075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	43.4	10.0	95.0
P075(SIM)B: Polynuclear Aromatic Hydrocarbo	ns (QCLot: 4866073)							
P075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	72.1	50.0	94.0
P075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	84.9	63.6	114
P075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	75.1	62.2	113
P075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	72.2	63.9	115
P075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	77.5	62.6	116
P075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	89.5	64.3	116
P075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	71.1	63.6	118
P075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	79.4	63.1	118
P075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	66.4	64.1	117
P075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	71.5	62.5	116
P075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 μg/L	70.4	61.7	119
	205-82-3							
P075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	79.6	63.0	115
P075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	69.2	63.3	117
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	66.2	59.9	118
P075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	66.5	61.2	117
P075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	68.7	59.1	118
P080/071: Total Petroleum Hydrocarbons (QCI	_ot: 4866074)							
P071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	57.2	53.7	97.0
P071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	81.3	63.3	107
P071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	87.3	58.3	120
P080/071: Total Petroleum Hydrocarbons (QCI	ot: 4868872)							
P080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	95.2	75.0	127
P080/071: Total Recoverable Hydrocarbons - N	EDM 2013 Fractions (OCL)		, F-5	-	FU			
P071: >C10 - C16 Fraction	EPW 2013 Fractions (QCL)	100	μg/L	<100	500 μg/L	62.9	53.9	95.5
P071: >C10 - C16 Fraction P071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	87.0	57.8	110
		100	μg/L	<100	700 μg/L 300 μg/L	86.2	50.5	115
P071: >C34 - C40 Fraction P080/071: Total Recoverable Hydrocarbons - N			ру/с	100	300 μg/L	00.2	30.3	113

Page : 6 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 4868872) - co	ntinued					
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	99.3	75.0	127
EP080: BTEXN (QCLot: 4868872)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	97.8	70.0	122
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	87.9	69.0	123
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	86.4	70.0	120
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	83.2	69.0	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	90.0	72.0	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	96.0	70.0	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)F: D	issolved Metals by ICP-AES (QCLot: 4869828)						
ES2304342-001	SW1	EG005F: Manganese	7439-96-5	1 mg/L	108	70.0	130
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 4869827)						
ES2304488-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	91.9	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	93.6	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	89.0	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	91.2	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	87.3	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	90.6	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	91.3	70.0	130
EG035F: Dissolve	d Mercury by FIMS (QCLot: 4869826)						
ES2304342-001	SW1	EG035F: Mercury	7439-97-6	0.01 mg/L	89.4	70.0	130
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 486	9687)					
ES2304232-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	103	70.0	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4869684)						
ES2304233-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	82.4	70.0	130
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 4869683)						
ES2304233-001	Anonymous	EK067G: Total Phosphorus as P		10 mg/L	92.5	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4868872)						
ES2304473-001	Anonymous						

Page : 7 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4868872) - continued							
ES2304473-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	108	70.0	130	
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 4868872)						
ES2304473-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	112	70.0	130	
EP080: BTEXN (Q	CLot: 4868872)							
ES2304473-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	85.3	70.0	130	
		EP080: Toluene	108-88-3	25 μg/L	93.5	70.0	130	
		EP080: Ethylbenzene	100-41-4	25 μg/L	100	70.0	130	
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	98.8	70.0	130	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	25 μg/L	102	70.0	130	
		EP080: Naphthalene	91-20-3	25 μg/L	99.4	70.0	130	

CLIENT: SPANGJA

CHAIN OF CUSTODY

ALS Laboratory: please tick >

	_HCRARSHEE = T.Carlion Shael Rimon > .0 1812 en .07 4772 (0000 E.M. Steren Townsonthi Cleriotest dom _HACK CHECORS 618.21 (Saight Blad Time, Nath Vyodon of et NEW 2010) on .02 (4255-3155 E. wellongongiócksglober com	yan och 1847 vilote kajastal som 34 om och 1916 Möllön globet som	WSW 28	
- 1	FOR LABORATORY USE ONLY (Circle)	Jircle)		
	Custody Seat Intact?	Yes	No	NA
	Free ice / frozen ice bricks present upon receipt?	Yes	No	N/A
7	Random Sample Temperature on Receipt:		°C	
7	Other comment:			
四	ELINQUISHED BY:	RECEIVED BY:		
A	дтеліме:	DATE/TIME:	2000	

OF: DATE/TIME RECEIVED BY: COC SEQUENCE NUMBER (Circle)

COC 3 4 5 6

E 0 2 3 4 5 6 N (4)01x

Email Invoice to (will default to PM if no other addresses are listed): Supplieraccounts (a) Sequence .com. Email Reports to (will default to PM if no other addresses are listed): bec.chappe(c) servere, com. cun

2

14/8/23

2,45pm

CONTAINER INFORMATION

ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price)

Additional Information

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL

ALS USE ONLY

SAMPLE DETAILS MATRIX: Solid(S) Water(W)

LAB ID

SAMPLE ID

DATE / TIME

MATRIX

TYPE & PRESERVATIVE (refer to codes below)

BOTTLES W-26

W-2 (8M)

W-14 A CPAH/phenol)

NT-11

NT-8

W-18

S

MW3 MWZ

N

300

1

18/23

5

5

 $\times \times \times \times$

4

ナスと

300

0 S

500

SIN

XX

S

力無

TRIP Blank

Telephone: + 61-2-8784 8555

TRIP SPIKE

0

QC402

Q(50Z

4

2 00

00302

4

QC102 SW2 PROJECT MANAGER: Be C

Chapple rechowise

SAMPLER MOBILE: 0429 727968

RELINQUISHED BY

HWWh

CONTACT PH:

COUNTRY OF ORIGIN

(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)

Non Standard or urgent TAT (List due date)

coc:

TURNAROUND REQUIREMENTS:

X Standard TAT (List due date)

EDD FORMAT (or default)

ORDER NUMBER:

SAMPLER:

Hanley

COC Emailed to ALS? (YES / NO)

PROJECT: WE RECTIVECT WETNETH POWN PROJECT NO.: 2010Z ALS QUOTE NO.:

PURCHASE ORDER NO.

Total dissolved
solids (TDS)
+ Suspended
Folids
(TDS)

Sydne) **Environmental Division**

Work Order Reference

 $\times \times \times \times$

VOA Vlai HCl Preserved; VB = VOA Vial Sodium Bisulphate Preserved: VS = VOA Vial Sulfuric Preserved: AV = Airfreight Unpre ed; S = Sodium Hydroxidis Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic
Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preser
LI = LugoIs lodine Preserved Bottles; STT = Sterile Sodium Thiosulfate Preserved Bottles. ved Glass;

TOTAL

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2327328

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : BEC CHAPPLE Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

 Telephone
 : --- Telephone
 : + 61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : 20102 REDIRECT WETHERILL PARK Page : 1 of 3

 Order number
 : --- Quote number
 : EM2020SENVER0016 (EN/103/21)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

 Site
 : ---

Sampler : Hayley Yellowlees

Dates

Date

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 10.8'C,12.2'C,13.9'C - Ice

present

Receipt Detail : No. of samples received / analysed : 11 / 10

General Comments

Delivery Details

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 14-Aug-2023 Issue Date

Page

2 of 3 ES2327328 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessa tasks. Packages as the determina tasks, that are inclu- lf no sampling default 00:00 on	ry for the execution may contain addition of moisture uded in the package. Itime is provided, the date of sampling date with	the sampling time will g. If no sampling date II be assumed by the ckets without a time	Standard Level	WATER - EA025H Suspended Solids - Standard Level	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - W-02 8 Metals	WATER - W-14A PAH/Phenols (SIM)	WATER - W-26 TRH/BTEXN/PAH/8 Metals
	-	MW2	+		✓				∀
ES2327328-002 ES2327328-003	14-Aug-2023 00:00 14-Aug-2023 00:00	MW3	+-		∀				∀
	ū	MW4	-		∀				∀
ES2327328-004	14-Aug-2023 00:00		-		∀				∀
ES2327328-005	14-Aug-2023 00:00	MW6			V			-	V
ES2327328-006	14-Aug-2023 00:00	SW1	√	✓		✓	√	✓	
ES2327328-007	14-Aug-2023 00:00	SW2	✓	✓		✓	✓	✓	
ES2327328-008	14-Aug-2023 00:00	QC102							✓
Matrix: WATER Laboratory sample	Sampling date / time	Sample ID	(On Hold) WATER No analysis requested	WATER - EA005P pH (Auto Titrator)	WATER - EP080 BTEXN	WATER - W-18 TRH(C6 - C9)/BTEXN			
ES2327328-006	14-Aug-2023 00:00	SW1		✓					
ES2327328-007	14-Aug-2023 00:00	SW2		✓					
ES2327328-009	14-Aug-2023 00:00	QC302	1						
ES2327328-010	31-Jul-2023 00:00	QC402 TRIP SPIKE			✓				
ES2327328-011	01-Aug-2023 00:00	QC502 TRIP BLANK				1	1		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 14-Aug-2023

Page

3 of 3 ES2327328 Amendment 0 Work Order Client : SENVERSA PTY LTD

Requested Deliverables

BEC CHAPPLE

- *AU Certificate of Analysis - NATA (COA) Email bec.chapple@senversa.com.au - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) Email bec.chapple@senversa.com.au - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) Email bec.chapple@senversa.com.au - A4 - AU Sample Receipt Notification - Environmental HT (SRN) Email bec.chapple@senversa.com.au - A4 - AU Tax Invoice (INV) Email bec.chapple@senversa.com.au - Chain of Custody (CoC) (COC) Email bec.chapple@senversa.com.au - EDI Format - ESDAT (ESDAT) Email bec.chapple@senversa.com.au

SUPPLIER ACCOUNTS

- A4 - AU Tax Invoice (INV) Email supplieraccounts@senversa.com.a

CERTIFICATE OF ANALYSIS

Page **Work Order** : ES2327328 : 1 of 10

Amendment : 2

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : BEC CHAPPLE Contact : Khaleda Ataei

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone Telephone : + 61 2 8784 8555 : 20102 REDIRECT WETHERILL PARK **Date Samples Received** Project : 14-Aug-2023 17:45

Order number C-O-C number

Sampler : Hayley Yellowlees

Site

Quote number : EN/103/21

No. of samples received : 11 No. of samples analysed : 11 **Date Analysis Commenced** : 14-Aug-2023 : 23-Aug-2023 12:16 Accreditation No. 825

> Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

Issue Date

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Signatories Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Wisam Marassa

Page : 2 of 10

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project · 20102 REDIRECT WETHERILL PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- Amendment (23/08/2023): This report has been amended and re-released to allow the reporting of additional analytical data, specifically method EG020F for samples 001-009.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

: 3 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	14-Aug-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2327328-001	ES2327328-002	ES2327328-003	ES2327328-004	ES2327328-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-M	S	13						
Arsenic	7440-38-2	0.001	mg/L	0.008	0.004	<0.010	0.007	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0010	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.010	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.010	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.036	0.005	0.207	0.020	0.002
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.010	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.045	0.009	0.122	<0.005	0.006
Manganese	7439-96-5	0.001	mg/L	2.26	1.00	6.39	6.04	0.225
Iron	7439-89-6	0.05	mg/L	2.01	0.58	5.64	2.91	0.20
EG035F: Dissolved Mercury by FIMS	S							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.49	0.52	0.29	0.32	0.09
EK057G: Nitrite as N by Discrete Ar								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete A		-	Ü					
Nitrate as N	14797-55-8	0.01	mg/L	0.02	<0.01	<0.01	<0.01	0.18
			9/_		0.01	0.01	0.0 .	VII.0
EK059G: Nitrite plus Nitrate as N (N Nitrite + Nitrate as N	OX) by Discrete Ana	0.01	mg/L	0.02	<0.01	<0.01	<0.01	0.18
		0.01	IIIg/L	0.02	10.01	40.01	10.01	0.10
EK061G: Total Kjeldahl Nitrogen By Total Kjeldahl Nitrogen as N		0.1	ma/l	0.6	0.6	0.4	0.5	0.4
			mg/L	0.6	0.6	0.4	0.5	0.4
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ar		(I					•
^ Total Nitrogen as N		0.1	mg/L	0.6	0.6	0.4	0.5	0.6
EK067G: Total Phosphorus as P by	Discrete Analyser							1
Total Phosphorus as P		0.01	mg/L	0.02	0.04	0.02	0.01	0.14
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0

: 4 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
,		Samplii	ng date / time	14-Aug-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2327328-001	ES2327328-002	ES2327328-003	ES2327328-004	ES2327328-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic F	lydrocarbons - Cont	inued						
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	μg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	μg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	μg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	<20	<20
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	μg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	<100	<100	<100	<100
(F2)								
EP080: BTEXN Benzene	74.40.0	1	ug/l	<1	<1	<1	<1	<1
Toluene	71-43-2 108-88-3	2	μg/L μg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	μg/L μg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L μg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	μg/L μg/L	<2	<2	<2	<2	<2
^ Total Xylenes	90-47-0	2	μg/L μg/L	<2	<2	<2	<2	<2

: 5 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	14-Aug-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2327328-001	ES2327328-002	ES2327328-003	ES2327328-004	ES2327328-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		1	μg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	<5
EP075(SIM)S: Phenolic Compound Surroga	ates							
Phenol-d6	13127-88-3	1.0	%	22.9	22.8	26.0	20.8	21.5
2-Chlorophenol-D4	93951-73-6	1.0	%	50.6	51.0	57.1	47.4	48.6
2.4.6-Tribromophenol	118-79-6	1.0	%	42.6	40.1	48.2	42.4	38.5
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	63.7	62.6	69.8	58.0	60.5
Anthracene-d10	1719-06-8	1.0	%	78.5	75.9	82.2	72.3	72.0
4-Terphenyl-d14	1718-51-0	1.0	%	85.5	84.1	89.2	82.0	79.2
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	121	117	110	116	97.2
Toluene-D8	2037-26-5	2	%	110	113	116	112	99.9
4-Bromofluorobenzene	460-00-4	2	%	124	125	123	120	107

: 6 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	SW2	QC102	QC302	QC402
(Matrix: WATER)		Samnli	ng date / time	14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	TRIP SPIKE 31-Jul-2023 00:00
O man a mark	0.4.0.4//	LOR	Unit	ES2327328-006	ES2327328-007	ES2327328-008	ES2327328-009	ES2327328-010
Compound	CAS Number	LOR	Onn					
FACCED all by DC Tituates				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator pH Value		0.01	pH Unit	8.03	7.75			
		0.01	prionit	0.03	7.75			
EA015: Total Dissolved Solids dried Total Dissolved Solids @180°C		10	mg/L	316	105		l	
		10	IIIg/L	310	105			
EA025: Total Suspended Solids drie		_						
Suspended Solids (SS)		5	mg/L	238	39			
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	<0.010	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0010	<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	<0.010	<0.001	
Copper	7440-50-8	0.001	mg/L	0.004	0.001	<0.010	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.205	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.010	<0.001	
Zinc	7440-66-6	0.005	mg/L	0.005	0.038	0.074	<0.005	
Manganese	7439-96-5	0.001	mg/L	0.016	0.007	6.57	0.038	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	6.04	<0.05	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.68	0.62			
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.7	0.7			
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ar	alvser						
^ Total Nitrogen as N		0.1	mg/L	2.4	1.3			
EK067G: Total Phosphorus as P by I	Discrete Analyser	7						
Total Phosphorus as P		0.01	mg/L	0.35	0.09			
EP075(SIM)A: Phenolic Compounds	13 14 15							
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0			
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0			
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0			
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0			
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0			
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0			
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0			

: 7 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	SW2	QC102	QC302	QC402 TRIP SPIKE
		Sampli	ng date / time	14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	31-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	ES2327328-006	ES2327328-007	ES2327328-008	ES2327328-009	ES2327328-010
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compound	s - Continued							
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0			
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0			
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0			
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0			
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	
^ Sum of polycyclic aromatic hydrocarl	oons	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	<0.5	<0.5	
EP080/071: Total Petroleum Hydrod	carbons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20	<20	
C10 - C14 Fraction		50	μg/L	<50	<50	<50	<50	
C15 - C28 Fraction		100	μg/L	<100	<100	<100	<100	
C29 - C36 Fraction		50	μg/L	<50	<50	<50	<50	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	<20	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20	
(F1)								

: 8 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER (Matrix: WATER)			SW1	SW1 SW2		QC302	QC402 TRIP SPIKE	
	Sampling date / time			14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	14-Aug-2023 00:00	31-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	ES2327328-006	ES2327328-007	ES2327328-008	ES2327328-009	ES2327328-010
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	<100	
>C16 - C34 Fraction		100	μg/L	<100	<100	<100	<100	
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	<100	<100	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	<100	<100	<100	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	<1	<1	<1	16
Toluene	108-88-3	2	μg/L	<2	<2	<2	<2	16
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	<2	17
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	<2 <2	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2 <2		19
^ Total Xylenes		2	μg/L	<2	<2	<2	<2	37
^ Sum of BTEX		1	μg/L	<1	<1	<1	<1	86
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	17
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%	23.9	23.1	22.4	19.8	
2-Chlorophenol-D4	93951-73-6	1.0	%	52.5	51.4	47.7	49.2	
2.4.6-Tribromophenol	118-79-6	1.0	%	50.5	54.1	42.3	40.1	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	67.4	67.4	57.2	64.8	
Anthracene-d10	1719-06-8	1.0	%	86.2	85.2	71.5	71.2	
4-Terphenyl-d14	1718-51-0	1.0	%	87.7	86.7	76.6	78.4	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	99.7	111	114	112	98.0
Toluene-D8	2037-26-5	2	%	105	110	108	110	116
4-Bromofluorobenzene	460-00-4	2	%	115	115	119	122	123

: 9 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER	Sample ID			QC502		 	
(Matrix: WATER)				TRIP BLANK			
Sampling date / time			01-Aug-2023 00:00		 		
Compound	CAS Number LOR Unit		ES2327328-011		 		
				Result		 	
EP080/071: Total Petroleum Hydroca	EP080/071: Total Petroleum Hydrocarbons						
C6 - C9 Fraction		20	μg/L	<20		 	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
C6 - C10 Fraction	C6_C10	20	μg/L	<20		 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20		 	
(F1)							
EP080: BTEXN	EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1		 	
Toluene	108-88-3	2	μg/L	<2		 	
Ethylbenzene	100-41-4	2	μg/L	<2		 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2		 	
ortho-Xylene	95-47-6	2	μg/L	<2		 	
^ Total Xylenes		2	μg/L	<2		 	
^ Sum of BTEX		1	μg/L	<1		 	
Naphthalene	91-20-3	5	μg/L	<5		 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	96.6		 	
Toluene-D8	2037-26-5	2	%	115		 	
4-Bromofluorobenzene	460-00-4	2	%	121		 	

: 10 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

20102 REDIRECT WETHERILL PARK Project

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)				
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogates	;				
Phenol-d6	13127-88-3	10	44		
2-Chlorophenol-D4	93951-73-6	14	94		
2.4.6-Tribromophenol	118-79-6	17	125		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	20	104		
Anthracene-d10	1719-06-8	27	113		
4-Terphenyl-d14	1718-51-0	32	112		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	72	143		
Toluene-D8	2037-26-5	75	131		
4-Bromofluorobenzene	460-00-4	73	137		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2327328** Page : 1 of 9

Amendment : 2

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : BEC CHAPPLE
 Telephone
 : + 61 2 8784 8555

 Project
 : 20102 REDIRECT WETHERILL PARK
 Date Samples Received
 : 14-Aug-2023

Site :--- Issue Date : 23-Aug-2023

Sampler : Hayley Yellowlees No. of samples received : 11
Order number : ---- No. of samples analysed : 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboraton, Dunlington (DLID)	U				
Laboratory Duplicates (DUP) PAH/Phenols (GC/MS - SIM)	0	16	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	18	0.00		NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	16	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	18	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: WATER					Lvaluation	. ~ - Holding time	breach; ▼ = within	ir noluling time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) SW1,	SW2	14-Aug-2023				14-Aug-2023	14-Aug-2023	√
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) SW1,	SW2	14-Aug-2023				17-Aug-2023	21-Aug-2023	√
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) SW1,	SW2	14-Aug-2023				17-Aug-2023	21-Aug-2023	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW1, MW3, MW6, SW2, QC302	MW2, MW4, SW1, QC102,	14-Aug-2023	****			16-Aug-2023	10-Feb-2024	✓

Page : 3 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MW1, MW3, MW6, SW2,	MW2, MW4, SW1, QC102,	14-Aug-2023				17-Aug-2023	11-Sep-2023	✓
QC302	QC 102,							
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) MW1, MW3, MW6	MW2, MW4,	14-Aug-2023				17-Aug-2023	11-Sep-2023	✓
EK057G: Nitrite as N by Discrete Analyser		<u> </u>						
Clear Plastic Bottle - Natural (EK057G) MW1, MW3, MW6	MW2, MW4,	14-Aug-2023				16-Aug-2023	16-Aug-2023	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) MW1, MW3, MW6, SW2	MW2, MW4, SW1,	14-Aug-2023				17-Aug-2023	11-Sep-2023	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) MW1, MW3, MW6, SW2	MW2, MW4, SW1,	14-Aug-2023	16-Aug-2023	11-Sep-2023	1	17-Aug-2023	11-Sep-2023	✓
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) MW1, MW3, MW6, SW2	MW2, MW4, SW1,	14-Aug-2023	16-Aug-2023	11-Sep-2023	✓	17-Aug-2023	11-Sep-2023	✓
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved (EP075(SIM)) SW1,	SW2	14-Aug-2023	16-Aug-2023	21-Aug-2023	1	17-Aug-2023	25-Sep-2023	✓

Page : 4 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sample Date Extraction / Preparation Date entracted Due for extraction Evaluation Date enalysed Due for analysis Evaluation									
Container (Client Semple (Eff.) Entry (SIMI) Polynuclear Aromatic Hydrocarbons	Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time
### PROPERTY SIMILE Polynuclear Aromatic Hydrocarbons ####################################	Method		Sample Date	E)	traction / Preparation			Analysis	
Amber Glass Bottle - Unpreserved (EP075(SIM)) MW1, MW3, MW4, MW6, SW2 SW1. CC302 14-Aug-2023 16-Aug-2023 14-Aug-2023 16-Aug-2023 11-Aug-2023 18-Aug-2023	Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW1, MW2, MW4, MW6, SW1, MW4, MW6, SW1, MW4, MW6, SW1, MW6, SW1, MW6, SW1, MW6, SW1, MW6, SW2, MW6,	EP075(SIM)B: Polynuclear Aromatic Hydrocar	rbons							
MW1, MW2, MW4, MW6, SW1, MW4, MW6, SW1, MW6, SW1, MW6, SW1, MW6, SW1, MW6, SW2, MW6,	Amber Glass Bottle - Unpreserved (EP075(SIM	VI))							
MW6, SW1,	MW1,	MW2,	14-Aug-2023	16-Aug-2023	21-Aug-2023	1	17-Aug-2023	25-Sep-2023	1
MW6, SW2	MW3,	MW4,							
SW2	MW6,								
Amber Color Colo	SW2								
CC102, QC302 14-Aug-2023 16-Aug-2023 21-Aug-2023 21-Aug-2023 25-Sep-2023		VI))							
Amber (Glass Bottle - Unpreserved (EP071) MW1, MW2, MW3, MW4, SW1, SW2, QC 102, QC 302 CC 302 CC 302 CC 102, CC 302 CC 102 - TRIP BLANK MW2, MW3, MW4, MW4, MW4, MW4, MW4, MW4, MW4, MW4			14-Aug-2023	16-Aug-2023	21-Aug-2023	✓	18-Aug-2023	25-Sep-2023	✓
Amber (Glass Bottle - Unpreserved (EP071) MW1, MW2, MW3, MW4, SW1, SW2, QC 102, QC 302 CC 302 CC 302 CC 102, CC 302 CC 102 - TRIP BLANK MW2, MW3, MW4, MW4, MW4, MW4, MW4, MW4, MW4, MW4	EP080/071: Total Petroleum Hydrocarbons								
MW3, MW4, SW1, SW2, QC102, QC302 Amber VOC Vial - Sulfuric Acid (EP080)	Amber Glass Bottle - Unpreserved (EP071)								
MW6, SW1, QC102, QC102, QC102, QC102, QC202 SW1, SW2, QC102, QC302 SW1, SW2, QC102, QC302 SW1, SW2, QC102, QC302 SW1, SW1, SW2, QC102, QC302 SW2, SW1, SW2, QC102, QC302 SW2, SW1, SW2, QC102, QC302 SW1, SW1, SW2, QC102, QC302 SW1, SW1, SW2, QC102, QC302 SW2, SW1, SW2, QC102, QC302 SW2, SW1, SW2, QC102, QC302 SW2, SW1, SW2, QC102, QC302 SW3, SW1, SW2, SW1, SW2, QC102, QC302 SW3, SW1, SW1, SW2, SW1, SW2, SW1, SW1, SW2, SW1, SW2, SW1, SW1, SW2, SW1, SW1, SW1, SW1, SW1, SW1, SW1, SW1	MW1,	MW2,	14-Aug-2023	16-Aug-2023	21-Aug-2023	1	17-Aug-2023	25-Sep-2023	√
SW2, QC102, QC502 - TRIP BLANK 01-Aug-2023	MW3,	MW4,							
SW2, QC102, QC502 - TRIP BLANK 01-Aug-2023	MW6,	SW1,							
QC302	The state of the s								
Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK MW2, MW3, MW4, MW6, SW1, SW2, QC102, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2015 Fractions Amber VOC Vial - Sulfuric Acid (EP080) MW1, MW3, MW2, MW2, MW3, MW4, MW6, SW1, SW2, QC102, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2015 Fractions Amber Glass Bottle - Unpreserved (EP071) MW1, MW2, MW3, MW4, MW6, SW1, SW2, QC102, QC302 T1-Aug-2023 16-Aug-2023 21-Aug-2023 21-Aug-2023 25-Sep-2023 Amber VOC Vial - Sulfuric Acid (EP080) QC302 Amber VOC Vial - Sulfuric Acid (EP080) MW2, Amber OVC Vial - Sulfuric Acid (EP080) MW2, Amber VOC Vial - Sulfuric Acid (EP080) MW2, MW3, MW4, MW6, SW1, MW2, MW8, MW4, MW6, SW1, MW2, MW8, MW8, MW4, MW6, SW1, MW8, MW8	I	40.10-							
QC502 - TRIP BLANK									
Amber VOC Vial - Sulfuric Acid (EP080)			01-Aug-2023	14-Aug-2023	15-Aug-2023	1	14-Aug-2023	15-Aug-2023	1
MW1, MW2, MW4, MW4, SW1, SW2, QC102, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071) MW3, MW4, MW6, SW1, SW2, QC102, QC302 MW9, MW3, MW4, MW6, SW1, SW2, QC102, QC302 Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK Amber Glass Bottle - Unpreserved (EP080) MW1, MW2, MW3, MW4, MW4, MW6, SW1, SW1, MW2, MR9, MW2, MR9, MR9, MR9, MR9, MR9, MR9, MR9, MR9									
MW6, SW1, QC102, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071)	The state of the s	MW2,	14-Aug-2023	17-Aug-2023	28-Aug-2023	1	17-Aug-2023	28-Aug-2023	✓
MW6, SW1, QC102, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071)	MW3.	MW4.							·
SW2, QC302 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071) MW1, MW6, SW1, QC302 Amber VOC Vial - Sulfuric Acid (EP080) MW2, MW3, MW4, MW6, SW1 - Sulfuric Acid (EP080) QC502 - TRIP BLANK Amber VOC Vial - Sulfuric Acid (EP080) MW1, MW2, MW3, MW4, MW4, MW4, MW4, MW4, MW4, MW6, SW1 - SW1, MW4, MW6, SW1, MW4, SW1, MW4, SW1, MW4, SW1, MW4, SW1, MW6, SW1, SW1, WW4, SW1, MW6, SW1, WW4, SW1, MW6, SW1, WM6, S	· · · · · · · · · · · · · · · · · · ·	,							
CG302 FP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	· · · · · · · · · · · · · · · · · · ·	•							
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071)	· · · · · · · · · · · · · · · · · · ·	ασ.σΞ,							
Amber Glass Bottle - Unpreserved (EP071)		- NEDM 2013 Fractions							
MW1, MW2, MW4, MW6, SW1, SW2, QC102, QC302 Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK Amber VOC Vial - Sulfuric Acid (EP080) MW2, MW2, MW4, MW6, SW1, SW2, QC502 - TRIP BLANK Amber VOC Vial - Sulfuric Acid (EP080) MW2, MW4, MW4, MW6, SW1, MW4, SW1, MW6, SW1,	-	FILE IN 2010 Fractions							
MW3, MW6, SW1, SW2, QC102, QC302 Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK MW2, MW2, MW2, MW4, MW4, MW4, MW6, SW1, MW3, MW4, SW1, SW1, MW4, SW1, SW1,		MW2.	14-Aug-2023	16-Aug-2023	21-Aug-2023	/	17-Aug-2023	25-Sep-2023	1
MW6, SW1, SW2, QC102, QC302 Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK 01-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 ✓ Amber VOC Vial - Sulfuric Acid (EP080) MW2, 14-Aug-2023 17-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓ MW3, MW4, MW4, SW1, SW1, NW2, NW3, NW4,	· · · · · · · · · · · · · · · · · · ·	,				_		·	•
SW2, QC302 QC102, COUNTY OF AUGUSTS COUNTY OF AUG-2023 15-Aug-2023 17-Aug-2023 17-Aug-2023 28-Aug-2023 √ 17-Aug-2023 28-Aug-2023 √ MW3, MW6, SW1, SW1	· · · · · · · · · · · · · · · · · · ·								
QC302 Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK O1-Aug-2023 Amber VOC Vial - Sulfuric Acid (EP080) MW1, MW3, MW4, MW6, SW1, O1-Aug-2023 MW2, MW4, MW6, SW1, O1-Aug-2023 MW2, MW4, MW6, O1-Aug-2023 O1-Au	l '	•							
Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK 14-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 ✓ Amber VOC Vial - Sulfuric Acid (EP080) MW2, 14-Aug-2023 17-Aug-2023 28-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓ MW3, MW4, SW1, SW1, <td< td=""><td>l control of the cont</td><td>QO 102,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	l control of the cont	QO 102,							
QC502 - TRIP BLANK 01-Aug-2023 14-Aug-2023 15-Aug-2023 15-Aug-2023 15-Aug-2023 ✓ Amber VOC Vial - Sulfuric Acid (EP080) MW2, 14-Aug-2023 17-Aug-2023 28-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓ MW3, MW4, SW1, SW1, SW1,									
Amber VOC Vial - Sulfuric Acid (EP080) MW1, MW2, 11-Aug-2023 17-Aug-2023 28-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓ MW3, MW4, SW1, SW1, 17-Aug-2023 28-Aug-2023 ✓ 17-Aug-2023 28-Aug-2023 ✓			01-Aug-2023	14-Aug-2023	15-Aug-2023	1	14-Aug-2023	15-Aug-2023	1
MW1, MW2, 14-Aug-2023 17-Aug-2023			1 13		J.	_		<u>u</u>	_
MW3, MW4, MW6, SW1,	· · ·	MW2,	14-Aug-2023	17-Aug-2023	28-Aug-2023	1	17-Aug-2023	28-Aug-2023	1
MW6, SW1,	The state of the s								
	· ·	,							
O	The state of the s								
QC302	· · · · · · · · · · · · · · · · · · ·	QO 102,							

Page : 5 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Matrix: WATER Evaluation: ★ = Holding time breach; ✓ = \								
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) QC502 - TRIP BLANK		01-Aug-2023	14-Aug-2023	15-Aug-2023	1	14-Aug-2023	15-Aug-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW1,	MW2,	14-Aug-2023	17-Aug-2023	28-Aug-2023	✓	17-Aug-2023	28-Aug-2023	✓
MW3,	MW4,							
MW6,	SW1,							
SW2,	QC102,							
QC302								
Amber VOC Vial - Sulfuric Acid (EP080)								
QC402 - TRIP SPIKE		31-Jul-2023	14-Aug-2023	14-Aug-2023	✓	14-Aug-2023	14-Aug-2023	✓

Page : 6 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification: √ = Quality Control frequency within specification.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	16	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	18	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)			1	1			
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	2	16	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	5	40	12.50	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	5	40	12.50	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	19	15.79	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	19	15.79	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)			1	1			
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	2	16	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	40	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Matrix: WATER Evaluation: ▼ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.									
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Method Blanks (MB) - Continued									
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Mercury by FIMS	EG035F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	16	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	0	18	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page : 8 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)

Page : 9 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

QUALITY CONTROL REPORT

: ES2327328 Work Order Page : 1 of 11

: 2 Amendment

Client Laboratory : Environmental Division Sydney : SENVERSA PTY LTD

Contact : BEC CHAPPLE Contact : Khaleda Ataei

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone Telephone : ----: + 61 2 8784 8555

Project Date Samples Received : 20102 REDIRECT WETHERILL PARK : 14-Aug-2023 Order number **Date Analysis Commenced** : 14-Aug-2023

Sampler : Hayley Yellowlees

Site

Quote number : EN/103/21

No. of samples received : 11 No. of samples analysed : 11

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

· 23-Aug-2023

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Page : 2 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC 1	Fitrator (QC Lot: 5233621)								
ES2327282-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.64	7.72	1.0	0% - 20%
ES2327333-005	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.64	7.67	0.4	0% - 20%
EA015: Total Dissol	ved Solids dried at 180 ± 5 °C	C (QC Lot: 5239101)							
ES2327006-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	160	157	1.9	0% - 50%
ES2327035-005	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	47200000 μg/L	44600	5.5	0% - 20%
ES2327110-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1680	1580	5.9	0% - 20%
EW2303543-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	530	537	1.3	0% - 20%
EA025: Total Suspe	nded Solids dried at 104 ± 2°	°C (QC Lot: 5239102)							
ES2327006-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit
ES2327035-005	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	30000 μg/L	43	34.8	No Limit
ES2327110-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	356	310	14.0	0% - 20%
EW2303543-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC Lot:	5236663)							
ES2327041-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.022	0.022	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.088	0.088	0.0	0% - 50%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.18	0.18	0.0	No Limit
ES2327081-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Page : 3 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS (Q	C Lot: 5236663) - continued							
ES2327081-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.104	0.099	4.9	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.006	0.005	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (Q	C Lot: 5236666)							
EW2303610-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.060	0.060	1.7	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.07	0.07	0.0	No Limit
EW2303629-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.050	0.051	2.2	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.13	0.22	47.9	No Limit
EG035F: Dissolved	Mercury by FIMS (Q	C Lot: 5236665)							
ES2327080-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2327328-002	MW2	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK055G: Ammonia	as N by Discrete Ana	lyser (QC Lot: 5238030)							
ES2327281-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit
ES2327328-003	MW3	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.29	0.29	0.0	0% - 20%
EK057G: Nitrite as	N by Discrete Analys	er (QC Lot: 5237562)							
ES2327328-003	MW3	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2327281-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	,	by Discrete Analyser (QC Lot: 5238031)							
ES2327281-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.09	0.09	0.0	No Limit
ES2327328-003	MW3	EK059G: Nitrite + Nitrate as N EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
L02021020-000	IVIVVO	ENUDSIG. Millille + Millialle as M		0.01	mg/L	NO.01	~0.01	0.0	INO LITTIL

Page : 4 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK061G: Total Kjeld	ahl Nitrogen By Discr	rete Analyser (QC Lot: 5238027)							
ES2327281-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.9	0.0	No Limit
ES2327328-002	MW2	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.0	No Limit
EK067G: Total Phos	phorus as P by Discr	ete Analyser (QC Lot: 5238026)							
ES2327281-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.0	No Limit
ES2327328-002	MW2	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbon	s (QC Lot: 5233625)							
ES2327291-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbon	s (QC Lot: 5236018)							
ES2327093-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2327167-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5233625)							
ES2327291-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5236018)							
ES2327093-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2327167-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5233625)	1 11 11 11 11 11 11 11 11 11							
ES2327291-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
EP080: BTEXN (QC I	Lot: 5236018)								
ES2327093-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3	0		-0	-0	0.0	NI - Limit
		EP080: ortho-Xylene	95-47-6 91-20-3	5	μg/L	<2 <5	<2 <5	0.0	No Limit
ES2327167-001	Anonymous	EP080: Naphthalene	71-43-2	1	μg/L μg/L	<5 <1	<5 <1	0.0	No Limit No Limit
L02021 101-001	Anonymous	EP080: Benzene EP080: Toluene	108-88-3	2	μg/L μg/L	<2	<2	0.0	No Limit
		EP080: Toluene EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
		Li 000. Hieta- α para-λyierie	106-42-3	-	₩9, -			0.0	THO EITH
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
1		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 5 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 5233621)								
EA005-P: pH Value			pH Unit		4 pH Unit	99.8	98.8	101
					7 pH Unit	99.8	99.2	101
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot:	5239101)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	101	87.0	109
				<10	293 mg/L	102	75.2	126
				<10	2380 mg/L	103	83.0	124
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot:	5239102)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	102	83.0	129
				<5	1000 mg/L	98.0	82.0	110
				<5	931 mg/L	102	83.0	118
EG020F: Dissolved Metals by ICP-MS (QCLot: 5236663)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	96.1	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.0	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.0	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	98.5	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.8	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	101	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.1	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	103	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.4	82.0	112
EG020F: Dissolved Metals by ICP-MS (QCLot: 5236666)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	100	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.8	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.9	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	101	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.8	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	99.1	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.0	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	106	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L		82.0	
EG035F: Dissolved Mercury by FIMS (QCLot: 5236665)	7-100-00-0	0.00	IIIg/L	٧٥.٥٥	0.5 mg/L	97.7	02.0	112

Page : 6 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	oratory Control Spike (LCS) Report		
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG035F: Dissolved Mercury by FIMS (QCLot: 5236665) - continued								
EG035F: Mercury 7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	92.8	83.0	105	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5238030)								
EK055G: Ammonia as N 7664-41-7	0.01	mg/L	<0.01	1 mg/L	102	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562)								
EK057G: Nitrite as N 14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	104	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 8	238031)							
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 5238027								
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	89.1	69.0	101	
			<0.1	1 mg/L	89.2	70.0	118	
			<0.1	5 mg/L	91.0	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 5238026)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	87.1	71.3	126	
			<0.01	0.442 mg/L	87.0	71.3	126	
			<0.01	1 mg/L	97.4	70.0	130	
EP075(SIM)A: Phenolic Compounds (QCLot: 5235620)								
EP075(SIM): Phenol 108-95-2	1	μg/L	<1.0	5 μg/L	33.4	24.5	61.9	
EP075(SIM): 2-Chlorophenol 95-57-8	1	μg/L	<1.0	5 μg/L	68.8	52.0	90.0	
EP075(SIM): 2-Methylphenol 95-48-7	1	μg/L	<1.0	5 μg/L	77.5	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol 1319-77-3	2	μg/L	<2.0	10 μg/L	63.5	44.0	88.0	
EP075(SIM): 2-Nitrophenol 88-75-5	1	μg/L	<1.0	5 μg/L	75.4	48.0	100	
EP075(SIM): 2.4-Dimethylphenol	1	μg/L	<1.0	5 μg/L	71.7	49.0	99.0	
EP075(SIM): 2.4-Dichlorophenol 120-83-2	1	μg/L	<1.0	5 μg/L	68.2	53.0	105	
EP075(SIM): 2.6-Dichlorophenol 87-65-0	1	μg/L	<1.0	5 μg/L	69.9	57.0	105	
EP075(SIM): 4-Chloro-3-methylphenol 59-50-7	1	μg/L	<1.0	5 μg/L	71.2	53.0	99.0	
EP075(SIM): 2.4.6-Trichlorophenol 88-06-2	1	μg/L	<1.0	5 μg/L	71.8	50.0	106	
EP075(SIM): 2.4.5-Trichlorophenol 95-95-4	1	μg/L	<1.0	5 μg/L	76.0	51.0	105	
EP075(SIM): Pentachlorophenol 87-86-5	2	μg/L	<2.0	10 μg/L	33.4	10.0	95.0	
EP075(SIM)A: Phenolic Compounds (QCLot: 5235874)								
EP075(SIM): Phenol 108-95-2	1	μg/L	<1.0	5 μg/L	35.5	24.5	61.9	
EP075(SIM): 2-Chlorophenol 95-57-8	1	μg/L	<1.0	5 μg/L	72.2	52.0	90.0	
EP075(SIM): 2-Methylphenol 95-48-7	1	μg/L	<1.0	5 μg/L	66.5	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol 1319-77-3	2	μg/L	<2.0	10 μg/L	59.0	44.0	88.0	
EP075(SIM): 2-Nitrophenol 88-75-5	1	μg/L	<1.0	5 μg/L	66.8	48.0	100	

Page : 7 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)A: Phenolic Compounds (QCLot: 5235874) -								
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	72.6	49.0	99.0
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	66.7	53.0	105
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	73.2	57.0	105
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	73.1	53.0	99.0
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	67.1	50.0	106
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	77.8	51.0	105
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	35.7	10.0	95.0
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 5235620)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	66.7	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	72.0	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	72.0	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	73.8	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	70.4	62.6	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	93.1	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	76.7	63.6	118
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	78.3	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	78.2	64.1	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	77.0	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	71.7	61.7	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	85.5	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	78.8	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	68.6	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	70.2	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	69.0	59.1	118
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 5235874)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	70.9	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	76.6	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	80.4	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	79.3	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	75.7	62.6	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	91.4	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	81.0	63.6	118
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	83.4	63.1	118

Page : 8 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report		S) Report	rt Acceptable Limits (%)		
				Report	Spike	Spike Recovery (%)	Acceptable	· · · /		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL										
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	73.5	64.1	117		
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	87.1	62.5	116		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	69.2	61.7	119		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	76.0	63.0	115		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	83.0	63.3	117		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	68.6	59.9	118		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	69.8	61.2	117		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	71.0	59.1	118		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 52336	625)									
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	101	75.0	127		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 52356	621)									
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	66.4	53.7	97.0		
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	80.9	63.3	107		
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	91.1	58.3	120		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 52358	873)									
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	83.4	53.7	97.0		
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	88.5	63.3	107		
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	79.5	58.3	120		
P080/071: Total Petroleum Hydrocarbons (QCLot: 5236	018)									
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	93.9	75.0	127		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	3 Fractions (QCL	ot: 5233625)								
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	98.0	75.0	127		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	3 Fractions (QCL	ot: 5235621)								
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	79.7	53.9	95.5		
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	80.9	57.8	110		
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	93.4	50.5	115		
P080/071: Total Recoverable Hydrocarbons - NEPM 2013	3 Fractions (QCL	ot: 5235873)								
P071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	66.9	53.9	95.5		
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	89.5	57.8	110		
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	89.3	50.5	115		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	3 Fractions (QCL	ot: 5236018)								
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	99.5	75.0	127		

Page : 9 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 5233625) - continued								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	91.7	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	92.1	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	89.1	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	99.7	73.0	122
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	102	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	84.2	75.5	124
EP080: BTEXN (QCLot: 5236018)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	99.0	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	95.6	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	100	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	102	73.0	122
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	104	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	102	75.5	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5236663)						
ES2327041-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	106	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.2	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	98.4	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	105	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	95.7	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	93.8	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	97.4	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	98.0	70.0	130
G020F: Dissolved	Metals by ICP-MS (QCLot: 5236666)						
ES2327328-005	MW6	EG020A-F: Arsenic	7440-38-2	1 mg/L	109	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	126	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	118	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	108	70.0	130

Page : 10 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER				M	atrix Spike (MS) Report	•	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 5236666) - continue	d					
ES2327328-005	MW6	EG020A-F: Lead	7439-92-1	1 mg/L	115	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	125	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	129	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	103	70.0	130
EG035F: Dissolve	d Mercury by FIMS (QCLot: 5236665)						
ES2327080-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	89.1	70.0	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 5238030)						
ES2327281-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	119	70.0	130
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 5237562)						
ES2327281-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	112	70.0	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCI						
ES2327281-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	110	70.0	130
	eldahl Nitrogen By Discrete Analyser (QCLot: 523			3			
ES2327281-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	88.5	70.0	130
	osphorus as P by Discrete Analyser (QCLot: 523)			o mg/L	00.0	70.0	100
ES2327281-002				1 ma/l	92.5	70.0	130
	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	92.5	70.0	130
	Petroleum Hydrocarbons (QCLot: 5233625)						
ES2327291-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	127	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 5236018)						
ES2327093-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	88.8	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	s (QCLot: 5233625)					
ES2327291-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	128	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	s (QCLot: 5236018)					
ES2327093-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	90.7	70.0	130
EP080: BTEXN (Q	(CLot: 5233625)						
ES2327291-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	106	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	112	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	123	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	128	70.0	130
			106-42-3	05. "	400	70.0	100
		EP080: ortho-Xylene	95-47-6 91-20-3	25 μg/L	126 94.9	70.0 70.0	130 130
	201 / 2000/0	EP080: Naphthalene	91-20-3	25 μg/L	94.9	70.0	130
EP080: BTEXN (Q							
ES2327093-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	95.5	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	91.4	70.0	130

Page : 11 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Ma	Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable l	imits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080: BTEXN (QC	CLot: 5236018) - continued								
ES2327093-001	Anonymous	EP080: Ethylbenzene	100-41-4	25 μg/L	100.0	70.0	130		
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	101	70.0	130		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	25 μg/L	102	70.0	130		
		EP080: Naphthalene	91-20-3	25 μg/L	86.1	70.0	130		

Carrier / Reference #: Carrier / Reference #: Carrier / Reference #:

Name/Signature: Name/Signature: lame/Signature:

Date/Time: Date/Time:

Date: Time:

Name/Signature: Name/Signature:

Time: Date: Time: Date:

Chain of Custody Documentation

senversa

Senversa Pty Ltd	Senversa Pty Ltd			Laboratory:		L			(Analysis Required			ſ
ABN 89 132 231 380	2 231 380 · *			Address: Contact: Phone:		· · · · ·	HHy !		(x3			Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.	: trace
Job Number:	\$ 20102			D. Coophorn		×SI						s	
Project Name:	2	ill Park	NA	Quote No:	EN/103/21	15/		DT UT	-				-
Sampled By:)	10.2		_	Standord] =				
Project Manager:		sals a	4	_	-	~			15			4	
Email Report To:		20 318 COS	The war to save the come		C42021847	راء		20	Ç00			of.	
		Sample Information	tion		Container Information				ر		a		
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	al Bottles		7070	3		ПОГ		-
-	50 3	3	712124			٥	×	T	_		1		T
~ 0	SW 2	3	712124			٩	X	×	/×				T
7	BC403 TR	3	212124			-		1	×				I
5	51 50570	3	riric			-		-	0				T
								I			+		T
													T
		*								r	1		
	*							-		Fnvir	Environmental Division	noioivi	T
								-	1	Svdn	ev ev	I I I I I I I I I I I I I I I I I I I	T
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+			Wo	Work Order Reference	ence	T
							_			<u>Н</u>	S2403	942	
	**												T
									+		後くきりまし		T
								L					T
					1			-					T
D												4	T
						Dec 19				Telephon	Telephone: +61-2-8784 8555		Τ
													Γ
													*
Total													
Sampler: I a specification	Sampler: I attest that proper field sampling procedures in accordance with Senversa standard procedures and/or project specifications were used during the collection of these samples:	ing procedures in ection of these sa	accordance with Ser	nversa standard proce		Sampler Name: R	Parote	7	Signature: Read	257	Date: 2/	721216	Г
Relinquished By:	ad By:				Method of Shipmont (if any or	icable).		11		The second secon			7
Name/Signature:	Ro	he -		Date: 71217	Carrier / Reference #*	icable).	A Z	Received by:	inco C	S. S		2/2/2.	T
OF:		W		L. 1	Date/Time:		Of:	of:	200		Date:	100	T

| Time: | Date/Time: | Date/Tim

Completed by: Checked by:

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2403942

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : sandy.phan@alsglobal.com

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555 Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 2

 Order number
 : --- Quote number
 : EB2023SENVER0001 (EN/000)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ---Sampler : Rowan Faint

Dates

Date Samples Received : 07-Feb-2024 15:46 Issue Date : 08-Feb-2024

Client Requested Due : 15-Feb-2024 Scheduled Reporting Date : 15-Feb-2024

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 11.3'C, 14.4'C, 16.2'C - Ice

present

Receipt Detail : No. of samples received / analysed : 4 / 4

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 08-Feb-2024 Issue Date

Page

: 2 of 2 : ES2403942 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determin tasks, that are included in the sampling default 00:00 on	may for the execution may contain ad ation of moisture uded in the package. time is provided, the date of sampling date wi	be part of a laboratory ion of client requested ditional analyses, such content and preparation the sampling time will ag. If no sampling date ill be assumed by the ackets without a time Sample ID	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EA025H Suspended Solids - Standard Level	WATER - EG005F Dissolved Metals by ICPAES	WATER - EP080 BTEXN	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-27 TRH/BTEXN/PAH/Phenols/8 Metals
ES2403942-001	07-Feb-2024 00:00	SW 1	✓	✓	✓		✓		✓
ES2403942-002	07-Feb-2024 00:00	SW 2	✓	✓	1		✓		✓
ES2403942-003	05-Feb-2024 00:00	QC403						✓	
ES2403942-004	05-Feb-2024 00:00	QC503				1			

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

BEC CHAPPLE

520 017.11 22		
- *AU Certificate of Analysis - NATA (COA)	Email	bec.chapple@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
EMMA WALSH		
- *AU Certificate of Analysis - NATA (COA)	Email	Emma.Walsh@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
Rowan Faint		
- *AU Certificate of Analysis - NATA (COA)	Email	rowan.faint@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	rowan.faint@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	rowan.faint@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	rowan.faint@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	rowan.faint@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	rowan.faint@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

C-O-C number

CERTIFICATE OF ANALYSIS

Work Order : ES2403942

Client : SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ----

Sampler : Rowan Faint

Site : ---

Quote number : EN/000

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Sandy Phan

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 07-Feb-2024 15:46

Date Analysis Commenced : 08-Feb-2024

Issue Date : 15-Feb-2024 14:03

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

Page : 3 of 7
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER			Sample ID	SW 1	SW 2	QC403	QC503	
(Matrix: WATER)		Sampli	ng date / time	07-Feb-2024 00:00	07-Feb-2024 00:00	05-Feb-2024 00:00	05-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2403942-001	ES2403942-002	ES2403942-003	ES2403942-004	
	<i>5,</i> 15, 14, 11, 15, 1			Result	Result	Result	Result	
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	374	394			
EA025: Total Suspended Solids dried	l at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	91	8			
EG005(ED093)F: Dissolved Metals by	ICP-AES							
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05			
Manganese	7439-96-5	0.01	mg/L	0.02	<0.01			
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.001	0.003			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001			
Copper	7440-50-8	0.001	mg/L	0.004	0.004			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001			
Zinc	7440-66-6	0.005	mg/L	<0.005	0.014			
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			
EK059G: Nitrite plus Nitrate as N (NC	0x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.41	0.28			
EK061G: Total Kjeldahl Nitrogen By D	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.7	0.9			
EK062G: Total Nitrogen as N (TKN + I	NOx) by Discrete A	nalyser						
^ Total Nitrogen as N		0.1	mg/L	2.1	1.2			
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.10	0.03			
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0			
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0			
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0			

Page : 4 of 7
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW 1	SW 2	QC403	QC503	
		Sampli	ng date / time	07-Feb-2024 00:00	07-Feb-2024 00:00	05-Feb-2024 00:00	05-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2403942-001	ES2403942-002	ES2403942-003	ES2403942-004	
				Result	Result	Result	Result	
EP075(SIM)A: Phenolic Compounds								
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0			
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0			
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0			
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0			
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0			
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0			
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0			
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0			
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0			
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0			
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0			
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0			
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0			
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0			
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0			
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0			
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0			
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0			
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0			
^ Sum of polycyclic aromatic hydrocar	rbons	0.5	μg/L	<0.5	<0.5			

Page : 5 of 7
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW 1	SW 2	QC403	QC503	
		Sampli	ng date / time	07-Feb-2024 00:00	07-Feb-2024 00:00	05-Feb-2024 00:00	05-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2403942-001	ES2403942-002	ES2403942-003	ES2403942-004	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued			<u></u>			
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5			
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20		
C10 - C14 Fraction		50	μg/L	490	<50			
C15 - C28 Fraction		100	μg/L	560	<100			
C29 - C36 Fraction		50	μg/L	<50	<50			
^ C10 - C36 Fraction (sum)		50	μg/L	1050	<50			
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20		
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20		
>C10 - C16 Fraction		100	μg/L	630	<100			
>C16 - C34 Fraction		100	μg/L	460	<100			
>C34 - C40 Fraction		100	μg/L	<100	<100			
^ >C10 - C40 Fraction (sum)		100	μg/L	1090	<100			
^ >C10 - C16 Fraction minus Naphthalen (F2)	e	100	μg/L	630	<100			
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	<1	<1	20	
Toluene	108-88-3	2	μg/L	<2	<2	<2	18	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	17	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	16	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	16	
^ Total Xylenes		2	μg/L	<2	<2	<2	32	
^ Sum of BTEX		1	μg/L	<1	<1	<1	87	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	16	
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	1.0	%	25.8	26.8			

Page : 6 of 7
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW 1	SW 2	QC403	QC503	
		Sampli	ng date / time	07-Feb-2024 00:00	07-Feb-2024 00:00	05-Feb-2024 00:00	05-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2403942-001	ES2403942-002	ES2403942-003	ES2403942-004	
				Result	Result	Result	Result	
EP075(SIM)S: Phenolic Compound	Surrogates - Continued	1						
2-Chlorophenol-D4	93951-73-6	1.0	%	51.8	54.8			
2.4.6-Tribromophenol	118-79-6	1.0	%	58.8	72.6			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	76.4	74.8			
Anthracene-d10	1719-06-8	1.0	%	92.4	75.5			
4-Terphenyl-d14	1718-51-0	1.0	%	92.6	89.0			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	122	134	115	101	
Toluene-D8	2037-26-5	2	%	119	129	114	109	
4-Bromofluorobenzene	460-00-4	2	%	122	135	104	97.7	

Page : 7 of 7
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surro	ogates				
Phenol-d6	13127-88-3	10	44		
2-Chlorophenol-D4	93951-73-6	14	94		
2.4.6-Tribromophenol	118-79-6	17	125		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	20	104		
Anthracene-d10	1719-06-8	27	113		
4-Terphenyl-d14	1718-51-0	32	112		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	72	143		
Toluene-D8	2037-26-5	75	131		
4-Bromofluorobenzene	460-00-4	73	137		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2403942** Page : 1 of 8

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : EMMA WALSH
 Telephone
 : +61-2-8784 8555

 Project
 : S20102 Wetherill Park WME
 Date Samples Received
 : 07-Feb-2024

 Site
 : --- Issue Date
 : 15-Feb-2024

Sampler : Rowan Faint No. of samples received : 4
Order number : ---- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	ES2403761003	Anonymous	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	ES2403912001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	ES2403868001	Anonymous	Total Phosphorus as P		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Co	ount	Rate	e (%)	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	4	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)				1		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Watth. WATER					Lvaluation	. W - Holding time	breach, with	ir riolaling time.
Method	hod		Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H)								
SW 1,	SW 2	07-Feb-2024				13-Feb-2024	14-Feb-2024	✓
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H)								
SW 1,	SW 2	07-Feb-2024				13-Feb-2024	14-Feb-2024	✓

Page : 3 of 8 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: WATER					Lvaldation	. • - Holding time	breach, V = With	ir noluling time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)F: Dissolved Metals by ICP-AES								
Clear Plastic Bottle - Nitric Acid; Filtered (EG005F)		T T						
SW 1,	SW 2	07-Feb-2024				09-Feb-2024	05-Aug-2024	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
SW 1,	SW 2	07-Feb-2024				08-Feb-2024	05-Aug-2024	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
SW 1,	SW 2	07-Feb-2024				12-Feb-2024	06-Mar-2024	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)							00 M = 0004	
SW 1,	SW 2	07-Feb-2024				12-Feb-2024	06-Mar-2024	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)	SW 2	07-Feb-2024	12-Feb-2024	06-Mar-2024	,	12-Feb-2024	06-Mar-2024	
SW 1,		07-Feb-2024	12-Peb-2024	00-IVIAI-2024	✓	12-Feb-2024	00-Mai-2024	✓
EK067G: Total Phosphorus as P by Discrete Analyser		1		ı				<u> </u>
Clear Plastic Bottle - Sulfuric Acid (EK067G) SW 1.	SW 2	07-Feb-2024	12-Feb-2024	06-Mar-2024	1	12-Feb-2024	06-Mar-2024	1
	SW Z	07-1 05-2024	12-1 05-2024	00 Mai 2021		12-1 05-2024	00 Mai 2021	V
EP075(SIM)A: Phenolic Compounds Amber Glass Bottle - Unpreserved (EP075(SIM))		<u> </u>	<u> </u>			<u> </u>		
SW 1,	SW 2	07-Feb-2024	08-Feb-2024	14-Feb-2024	1	13-Feb-2024	19-Mar-2024	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons					_			
Amber Glass Bottle - Unpreserved (EP075(SIM))								
SW 1,	SW 2	07-Feb-2024	08-Feb-2024	14-Feb-2024	✓	13-Feb-2024	19-Mar-2024	1
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
SW 1,	SW 2	07-Feb-2024	08-Feb-2024	14-Feb-2024	✓	12-Feb-2024	19-Mar-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
QC403		05-Feb-2024	13-Feb-2024	19-Feb-2024	√	14-Feb-2024	19-Feb-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080) SW 1,	SW 2	07-Feb-2024	09-Feb-2024	21-Feb-2024	1	10-Feb-2024	21-Feb-2024	1
		01-1 CD-2024	00-1 00-2024	21100-2024	<u> </u>	10-1 05-2024	21105-2024	V
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	2013 Fractions	1	<u> </u>					
Amber Glass Bottle - Unpreserved (EP071) SW 1,	SW 2	07-Feb-2024	08-Feb-2024	14-Feb-2024	1	12-Feb-2024	19-Mar-2024	1
Amber VOC Vial - Sulfuric Acid (EP080)	52							V
QC403		05-Feb-2024	13-Feb-2024	19-Feb-2024	✓	14-Feb-2024	19-Feb-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
SW 1,	SW 2	07-Feb-2024	09-Feb-2024	21-Feb-2024	✓	10-Feb-2024	21-Feb-2024	✓

Page : 4 of 8 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080))							
QC403,	QC503	05-Feb-2024	13-Feb-2024	19-Feb-2024	✓	14-Feb-2024	19-Feb-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080))							
SW 1,	SW 2	07-Feb-2024	09-Feb-2024	21-Feb-2024	✓	10-Feb-2024	21-Feb-2024	✓

Page : 5 of 8
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

he expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	entrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	2	4	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	4	0.00	10.00	se	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	5	40	12.50	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	5	39	12.82	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	18	16.67	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	18	16.67	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	39	5.13	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	39	5.13	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							

Page : 6 of 8 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. Matrix: WATER Quality Control Sample Type Count Rate (%) Quality Control Specification Analytical Methods Method QC Evaluation Regular Actual Expected Matrix Spikes (MS) - Continued Dissolved Mercury by FIMS 9 5.00 NEPM 2013 B3 & ALS QC Standard EG035F 1 11.11 1 Dissolved Metals by ICP-AES 1 4 NEPM 2013 B3 & ALS QC Standard 25.00 5.00 EG005F 1 9 Dissolved Metals by ICP-MS - Suite A 1 11.11 5.00 NEPM 2013 B3 & ALS QC Standard EG020A-F ✓ Nitrite and Nitrate as N (NOx) by Discrete Analyser 1 18 5.56 NEPM 2013 B3 & ALS QC Standard EK059G 5.00 1 PAH/Phenols (GC/MS - SIM) EP075(SIM) 0 4 0.00 5.00 NEPM 2013 B3 & ALS QC Standard × Total Kjeldahl Nitrogen as N By Discrete Analyser 1 18 NEPM 2013 B3 & ALS QC Standard 5.56 5.00 EK061G ✓ Total Phosphorus as P By Discrete Analyser 1 18 5.56 5.00 NEPM 2013 B3 & ALS QC Standard EK067G 1 TRH - Semivolatile Fraction 0 4 0.00 5.00 NEPM 2013 B3 & ALS QC Standard EP071 × TRH Volatiles/BTEX 2 39 EP080 5.13 5.00 1 NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)

Page : 8 of 8 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenois (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.

QUALITY CONTROL REPORT

Work Order : **ES2403942** Page : 1 of 9

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555

Project : S20102 Wetherill Park WME Date Samples Received : 07-Feb-2024
Order number : ---- Date Analysis Commenced : 08-Feb-2024

C-O-C number ---- Issue Date · 15-Feb-2024

Sampler : Rowan Faint

Site : ----

No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with

not be reproduced, except in full.

This Quality Control Report contains the following information:

: EN/000

: 4

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

Page : 2 of 9 Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	solved Metals by ICP-AES	G (QC Lot: 5590163)							
ES2403595-002	Anonymous	EG005F: Manganese	7439-96-5	0.01	mg/L	47.0	47.8	1.6	0% - 20%
		EG005F: Iron	7439-89-6	0.05	mg/L	175	178	2.0	0% - 20%
ES2403942-002	SW 2	EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EA015: Total Dissolv	ved Solids dried at 180 ± 5	°C (QC Lot: 5598190)							
ES2403942-001	SW 1	EA015H: Total Dissolved Solids @180°C		10	mg/L	374	367	1.9	0% - 20%
ES2404000-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	182	212	14.8	0% - 20%
ES2404300-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	36	47	27.2	No Limit
EW2400609-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	146	145	0.0	0% - 50%
EA025: Total Susper	nded Solids dried at 104 ±	2°C (QC Lot: 5598191)							
ES2403942-001	SW 1	EA025H: Suspended Solids (SS)		5	mg/L	91	77	16.6	0% - 50%
ES2404000-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	140	130	7.6	0% - 20%
ES2404300-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	10	9	12.7	No Limit
EW2400609-004	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit
EG020F: Dissolved I	Metals by ICP-MS (QC Lot	t: 5590161)							
ES2403595-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0026	0.0026	0.0	0% - 20%
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.025	0.024	0.0	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.005	0.005	0.0	No Limit

Page : 3 of 9
Work Order : ES2403942

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS (QC L	ot: 5590161) - continued							
ES2403595-001	Anonymous	EG020A-F: Nickel	7440-02-0	0.001	mg/L	1.45	1.43	1.6	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	2.04	2.01	1.2	0% - 20%
EG035F: Dissolved	Mercury by FIMS (QC Lo	ot: 5590159)							
ES2403761-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	0.0070	0.0074	5.3	0% - 20%
EK059G: Nitrite plus	s Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 5594704)							
ES2403912-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	6.88	6.79	1.3	0% - 20%
ES2403955-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.04	0.03	0.0	No Limit
EK061G: Total Kjeld	lahl Nitrogen By Discrete	e Analyser (QC Lot: 5594699)							
ES2403852-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (1.0)*	mg/L	27.9	26.8	4.2	0% - 20%
ES2403919-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.9	2.4	18.8	0% - 20%
EK067G: Total Phos	phorus as P by Discrete	Analyser (QC Lot: 5594700)							
ES2403852-001	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.10)*	mg/L	8.31	8.35	0.5	0% - 20%
ES2403919-008	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons ((QC Lot: 5593731)							
ES2403857-007	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<0.02 mg/L	<20	0.0	No Limit
ES2403857-046	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<0.02 mg/L	<20	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons ((QC Lot: 5596095)							
ES2403888-002	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2403888-008	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons	s - NEPM 2013 Fractions (QC Lot: 5593731)							
ES2403857-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<0.02 mg/L	<20	0.0	No Limit
ES2403857-046	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<0.02 mg/L	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons	s - NEPM 2013 Fractions (QC Lot: 5596095)							
ES2403888-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2403888-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5593731)								
ES2403857-007	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<0.001 mg/L	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<0.005 mg/L	<5	0.0	No Limit
ES2403857-046	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<0.001 mg/L	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<0.002 mg/L	<2	0.0	No Limit

Page : 4 of 9
Work Order : ES2403942

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 5593731) - con	tinued							
ES2403857-046	Anonymous	EP080: meta- & para-Xylene	108-38-3	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<0.002 mg/L	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<0.005 mg/L	<5	0.0	No Limit
EP080: BTEXN (QC	Lot: 5596095)								
ES2403888-002	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2403888-008	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 5 of 9
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)F: Dissolved Metals by ICP-AES (QCL	ot: 5590163)							
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	106	82.0	114
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	106	81.0	113
EA015: Total Dissolved Solids dried at 180 ± 5 °C (Q	CLot: 5598190)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	102	87.0	109
				<10	293 mg/L	117	75.2	126
				<10	2470 mg/L	103	83.0	124
EA025: Total Suspended Solids dried at 104 ± 2°C(0	QCLot: 5598191)							
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	94.7	83.0	129
				<5	1000 mg/L	94.4	82.0	110
				<5	841 mg/L	106	83.0	118
EG020F: Dissolved Metals by ICP-MS (QCLot: 55901	61)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.8	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.6	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.2	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	104	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	95.5	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.3	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	86.7	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 55901	59)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	93.7	83.0	105
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 559	(4704)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	107	91.0	113
EK061G: Total Kjeldahl Nitrogen By Discrete Analys	er (OCL of: 5594699)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	93.3	69.0	101
, ,				<0.1	1 mg/L	97.1	70.0	118
				<0.1	5 mg/L	105	70.0	130
EK067G: Total Phosphorus as P by Discrete Analyse	r (QCLot: 5594700)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	87.9	71.3	126
·				<0.01	0.442 mg/L	89.7	71.3	126
				<0.01	1 mg/L	102	70.0	130
EP075(SIM)A: Phenolic Compounds (QCLot: 558882	5)							

Page : 6 of 9
Work Order : ES2403942

Sub-Matrix: WATER				Method Blank (MB)		S) Report			
				Report	Spike Spike Recovery (%) Acceptable Limits Concentration LCS Low				
Method: Compound CAS N	umber	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)A: Phenolic Compounds (QCLot: 5588825) - continue									
Zi oro(ciiti). I nonoi	-95-2	1	μg/L	<1.0	5 μg/L	32.5	24.5	61.9	
EP075(SIM): 2-Chlorophenol	-57-8	1	μg/L	<1.0	5 μg/L	72.2	52.0	90.0	
EP075(SIM): 2-Methylphenol 95	-48-7	1	μg/L	<1.0	5 μg/L	68.8	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol	-77-3	2	μg/L	<2.0	10 μg/L	58.8	44.0	88.0	
EP075(SIM): 2-Nitrophenol	-75-5	1	μg/L	<1.0	5 μg/L	71.8	48.0	100	
EP075(SIM): 2.4-Dimethylphenol	-67-9	1	μg/L	<1.0	5 μg/L	86.5	49.0	99.0	
EP075(SIM): 2.4-Dichlorophenol	-83-2	1	μg/L	<1.0	5 μg/L	71.7	53.0	105	
EP075(SIM): 2.6-Dichlorophenol	-65-0	1	μg/L	<1.0	5 μg/L	74.7	57.0	105	
EP075(SIM): 4-Chloro-3-methylphenol	-50-7	1	μg/L	<1.0	5 μg/L	66.4	53.0	99.0	
EP075(SIM): 2.4.6-Trichlorophenol	-06-2	1	μg/L	<1.0	5 μg/L	80.4	50.0	106	
EP075(SIM): 2.4.5-Trichlorophenol	-95-4	1	μg/L	<1.0	5 μg/L	70.8	51.0	105	
EP075(SIM): Pentachlorophenol 87	-86-5	2	μg/L	<2.0	10 μg/L	37.9	10.0	95.0	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 55888	25)								
EP075(SIM): Naphthalene 91	-20-3	1	μg/L	<1.0	5 μg/L	68.8	50.0	94.0	
EP075(SIM): Acenaphthylene 208	-96-8	1	μg/L	<1.0	5 μg/L	70.7	63.6	114	
EP075(SIM): Acenaphthene	-32-9	1	μg/L	<1.0	5 μg/L	72.6	62.2	113	
EP075(SIM): Fluorene 86	-73-7	1	μg/L	<1.0	5 μg/L	76.6	63.9	115	
EP075(SIM): Phenanthrene 85	-01-8	1	μg/L	<1.0	5 μg/L	86.1	62.6	116	
EP075(SIM): Anthracene 120	-12-7	1	μg/L	<1.0	5 μg/L	81.4	64.3	116	
EP075(SIM): Fluoranthene 206	-44-0	1	μg/L	<1.0	5 μg/L	98.4	63.6	118	
EP075(SIM): Pyrene 129	-00-0	1	μg/L	<1.0	5 μg/L	99.0	63.1	118	
EP075(SIM): Benz(a)anthracene 56	-55-3	1	μg/L	<1.0	5 μg/L	100	64.1	117	
EP075(SIM): Chrysene 218	-01-9	1	μg/L	<1.0	5 μg/L	98.6	62.5	116	
, , , , , , , , , , , , , , , , , , , ,	-99-2 -82-3	1	μg/L	<1.0	5 μg/L	94.5	61.7	119	
EP075(SIM): Benzo(k)fluoranthene 207	-08-9	1	μg/L	<1.0	5 μg/L	85.9	63.0	115	
EP075(SIM): Benzo(a)pyrene 50	-32-8	0.5	μg/L	<0.5	5 μg/L	96.1	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	-39-5	1	μg/L	<1.0	5 μg/L	96.5	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene 53	-70-3	1	μg/L	<1.0	5 μg/L	96.5	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	-24-2	1	μg/L	<1.0	5 μg/L	94.8	59.1	118	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5588826)									
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	73.9	53.7	97.0	
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	85.6	63.3	107	
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	98.5	58.3	120	

Page : 7 of 9
Work Order : ES2403942

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5	593731)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	86.0	75.0	127
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5	596095)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	104	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QC	Lot: 5588826)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	64.5	53.9	95.5
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	78.6	57.8	110
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	74.1	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QC	Lot: 5593731)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	79.2	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QC	Lot: 5596095)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	95.4	75.0	127
EP080: BTEXN (QCLot: 5593731)	11 11 11							
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	113	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	95.6	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	96.5	73.8	122
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	10 μg/L	100	73.0	122
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	99.8	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	93.2	75.5	124
EP080: BTEXN (QCLot: 5596095)	11 11							
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	116	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	111	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	105	73.8	122
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	10 μg/L	88.8	73.0	122
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	102	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	113	75.5	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High

Page : 8 of 9
Work Order : ES2403942

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)F: D	issolved Metals by ICP-AES (QCLot: 5590163)						
ES2403761-001	Anonymous	EG005F: Manganese	7439-96-5	1 mg/L	108	70.0	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5590161)						
ES2403761-003	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	116	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	104	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	102	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	122	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	81.1	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	113	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	# Not	70.0	130
EC025E: Discolves	Morough by EIMS (OCL et: EE004E0)				Determined		
ES2403595-003	Mercury by FIMS (QCLot: 5590159) Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	92.0	70.0	130
		2000 moreary	1439-91-0	0.01 Hig/L	92.0	70.0	130
	us Nitrate as N (NOx) by Discrete Analyser(QCLot: 55						
ES2403912-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not Determined	70.0	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5594699)						
ES2403860-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		50 mg/L	105	70.0	130
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 5594700)						
ES2403868-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	# Not	70.0	130
					Determined		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5593731)						
ES2403857-007	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	94.9	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5596095)						
ES2403888-002	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	77.8	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 5593731)					
ES2403857-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	90.1	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 5596095)					
ES2403888-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	71.4	70.0	130
EP080: BTEXN (Q	CLot: 5593731)						
ES2403857-007	Anonymous	EP080: Benzene	71-43-2	25 μg/L	111	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	93.1	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	93.9	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	97.0	70.0	130
			106-42-3				
		El coci ciale rijisho	95-47-6	25 μg/L	95.6	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	96.1	70.0	130

Page : 9 of 9 Work Order : ES2403942

Sub-Matrix: WATER				M	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (C	(CLot: 5596095)						
ES2403888-002	Anonymous	EP080: Benzene	71-43-2	25 μg/L	85.5	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	78.3	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	78.2	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	77.9	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	72.8	70.0	130
		FP080: Naphthalene	91-20-3	25 μg/L	77.8	70.0	130

COC_RF_GW sampling.xlsx

Subconforward Lab / Split WO

Chain of Custody อิคุรมากอกtation

Senversa

4119

Comments: e.g. Highly contaminated sample; hazardous materials present, trace Work Order Reference ES2404239 Environmental Division Sydney Please forward to Eurofins Telephone: +61-2-8784 8555 LORs etc. Date: Praw EG005F (FE AND MN) Attached By PO / Internal Signature: Connote / Courier: 8-TN NO NO: Rowan Faint W-26 (TRH/BTEX/PAH/8 METALS) W-18 (TRH/BTEXN) Sampler Name: Total Bottles 44 9 9 9 9 9 9 0408038593, 0404011544 Container Information of 1 Standard 7 Days P, VS x2, N, UA, VSA Sampler: I attest that proper field sampling procedures in accordance with Senversa standard procedures and/or project Type / Code EN/103/21 VOA VOA Sample Receipt ALS NSW Turn Around Time: Purchase Order Phone/Mobile: Time Laboratory: Address: Contact: Quote No: Phone: Page: 9/02/2024 9/02/2024 9/02/2024 9/02/2024 9/02/2024 9/02/2024 9/02/2024 9/02/2024 9/02/2024 rowan.faint@senversa.com.au Date Wetherill Park WME Emma Walsh Rowan Faint specifications were used during the collection of these samples: Sample Information Matrix * 3 3 3 3 3 3 3 3 > Sample ID QC103 QC203 QC404 QC504 QC303 MW2 MW3 MW6 MW1 ABN 89 132 231 380 Senversa Pty Ltd Email Report To: Project Manager Project Name: Sampled By: Job Number: Lab ID 9 55 W Total

Polinguished Rv.			[Method of Shipment (if applicable):	Keceived by:	
	7 C	Doto: 0/0/07	Carrier / Deference #	Name/Signature: ACC / 1/2	Date: 4/2/24
Name/Signature:	Rowall Faint	Date: 3/2/2+	51		0000
) UE		Time: 3:30 PM	Date/Time:		Time: (6.50
· ·		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN TRANSPORT OF THE PERSON NAMED IN THE P	CE COMPANION DE CONTRACTOR DE		
Nome/Signature		Date:	Carrier / Reference #:	Name/Signature:	Date:
Tallio Ognanie.					i
Of		Time:	Date/Time:	Of:	Time:
NAME AND ADDRESS OF THE OWNER, OF TAXABLE PARTY OF TAXABL		THE RESERVE THE PROPERTY OF TH			
Namo/Signafilia.		Date:	Carrier / Reference #:	Name/Signature:	Date:
Tall of Olymonic.					i
j.		Time:	Date/Time:	Of:	Time:
		CONTRACTOR DESCRIPTION OF STREET, STRE		the state of the s	The state of the s

Water Container Codes: P = Unpreserved Plastic; N = Nitric Acid (HNO₃) Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide (NaOH)/Cadmium (Cd) Preserved; S = Sodium Hydroxide Preserved Plastic; N = Sulphuric Preserved (HO) Preserved; VS = Sulphuric Preserved Share Slate (HO) Preserved (HO) Preserved (HO) Preserved Plastic; HO) Preserved (HO) Preserved Plastic; N = Sulphuric Preserved Marker (HO) Preserved (HO) Preserved Marker (HO) Preserved Marker (HO) Preserved Marker (HO) Preserved (HO) Preserved Marker (HO) Preserved Mark

Completed by:

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2404239

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : sandy.phan@alsglobal.com

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555 Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 3

 Order number
 : --- Quote number
 : EB2023SENVER0001 (EN/000)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : Rowan Faint

Dates

Date Samples Received : 09-Feb-2024 16:30 Issue Date : 10-Feb-2024 Client Requested Due : 15-Feb-2024 Scheduled Reporting Date : 15-Feb-2024

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 2 Temperature : 12.0'C, 13.6'C, 9.7'C - Ice

present

Receipt Detail : Large Esky No. of samples received / analysed : 8 / 8

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Sample QC203 to be forwarded to Eurofins for analysis.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 10-Feb-2024 Issue Date

Page

: 2 of 3 : ES2404239 Amendment 0 Work Order : SENVERSA PTY LTD Client

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

ES2404239-002 : [05-Feb-2024] : QC504 - Trip Spike 13

Summary of Sample(s) and Requested Analysis

process necessar tasks. Packages as the determinates, that are included for no sampling default 00:00 on	ary for the execution and contain and contain and contain of moisture uded in the package. Itime is provided, the date of sampling date with the contained the contained contained the contained con	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date ll be assumed by the ckets without a time	EG005F Metals by ICPAES	EP080	NT-08 ogen + NO2 + NO3 + NH3 + Total P	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - W-18 TRH(C6 - C9)/BTEXN	NATER - W-26 IRH/BTEXN/PAH/8 Metals
Laboratory sample	Sampling date /	Sample ID	WATER - Dissolved	WATER - BTEXN	WATER - NT-08 Total Nitrogen +	WATER - NT-11 Total Nitrogen a	WATER - W-18 TRH(C6 - C9)/B	WATER - W-26 TRH/BTEXN/PA
ES2404239-001	05-Feb-2024 00:00	QC404 Trip Blank					1	
ES2404239-002	05-Feb-2024 00:00	QC504 Trip Spike 13		✓				
ES2404239-003	09-Feb-2024 00:00	QC303				1		✓
ES2404239-004	09-Feb-2024 00:00	MW1	✓		✓			✓
ES2404239-005	09-Feb-2024 00:00	MW2	1		1			✓
ES2404239-006	09-Feb-2024 00:00	MW3	✓		✓			✓
ES2404239-007	09-Feb-2024 00:00	MW6	1		✓			✓
ES2404239-008	09-Feb-2024 00:00	QC103	1			✓		✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

: 10-Feb-2024 Issue Date

Page

3 of 3 ES2404239 Amendment 0 Work Order Client : SENVERSA PTY LTD

Requested Deliverables

BE			

SUPPLIER ACCOUNTS - A4 - AU Tax Invoice (INV)

BEC CHAPPLE		
- *AU Certificate of Analysis - NATA (COA)	Email	bec.chapple@senversa.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
EMMA WALSH		
 *AU Certificate of Analysis - NATA (COA) 	Email	Emma.Walsh@senversa.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
Rowan Faint		
- *AU Certificate of Analysis - NATA (COA)	Email	rowan.faint@senversa.com.au
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	rowan.faint@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	rowan.faint@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	rowan.faint@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	rowan.faint@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	rowan.faint@senversa.com.au

Email

supplieraccounts@senversa.com.a

CERTIFICATE OF ANALYSIS

Work Order : ES2404239

Client : SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ----

Sampler : Rowan Faint

Site : ---

C-O-C number

Quote number : EN/000

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 10

Laboratory : Environmental Division Sydney

Contact : Sandy Phan

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 09-Feb-2024 16:30

Date Analysis Commenced : 10-Feb-2024

Issue Date : 15-Feb-2024 18:29

Sydney Organics, Smithfield, NSW

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Edwandy Fadjar

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Organic Coordinator

Page : 2 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

Page : 3 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC404 Trip Blank	QC504 Trip Spike 13	QC303	MW1	MW2
		Sampli	ng date / time	05-Feb-2024 00:00	05-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00
Compound	CAS Number	LOR	Unit	ES2404239-001	ES2404239-002	ES2404239-003	ES2404239-004	ES2404239-005
				Result	Result	Result	Result	Result
EG005(ED093)F: Dissolved Metals by IC		0.05						2.51
Iron	7439-89-6	0.05	mg/L				3.96	0.54
Manganese	7439-96-5	0.01	mg/L				0.59	1.76
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L			<0.001	0.012	0.004
Cadmium	7440-43-9	0.0001	mg/L			<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L			<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L			<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L			<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L			<0.001	0.015	0.006
Zinc	7440-66-6	0.005	mg/L			<0.005	0.016	0.009
EG035F: Dissolved Mercury by FIMS		4						
Mercury	7439-97-6	0.0001	mg/L			<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Ana	alyser							
Ammonia as N	7664-41-7	0.01	mg/L				0.48	0.44
EK057G: Nitrite as N by Discrete Analys	ser							
Nitrite as N	14797-65-0	0.01	mg/L				<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	ser							
Nitrate as N	14797-55-8	0.01	mg/L				<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L			<0.01	<0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By Disc	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L			<0.1	0.6	0.8
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete Ar	alyser						
^ Total Nitrogen as N		0.1	mg/L			<0.1	0.6	0.8
EK067G: Total Phosphorus as P by Disc	crete Analyser							
Total Phosphorus as P		0.01	mg/L			0.02	<0.01	0.05
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons							

Page : 4 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC404 Trip Blank	QC504 Trip Spike 13	QC303	MW1	MW2
		Sampli	ng date / time	05-Feb-2024 00:00	05-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00
Compound	CAS Number	LOR	Unit	ES2404239-001	ES2404239-002	ES2404239-003	ES2404239-004	ES2404239-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont							
Naphthalene	91-20-3	1.0	μg/L			<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	μg/L			<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L			<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L			<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L			<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L			<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L			<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	μg/L			<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	μg/L			<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	μg/L			<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L			<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L			<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L			<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	μg/L			<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L			<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		20	μg/L	<20		<20	<20	<20
C10 - C14 Fraction		50	μg/L			<50	<50	<50
C15 - C28 Fraction		100	μg/L			<100	<100	<100
C29 - C36 Fraction		50	μg/L			<50	<50	<50
^ C10 - C36 Fraction (sum)		50	μg/L			<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fraction						
C6 - C10 Fraction	C6_C10	20	μg/L	<20		<20	<20	<20

Page : 5 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC404 Trip Blank	QC504 Trip Spike 13	QC303	MW1	MW2
		Sampli	ng date / time	05-Feb-2024 00:00	05-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00
Compound	CAS Number	LOR	Unit	ES2404239-001	ES2404239-002	ES2404239-003	ES2404239-004	ES2404239-005
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydrod								
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20		<20	<20	<20
(F1) >C10 - C16 Fraction		100	μg/L			<100	<100	<100
>C16 - C34 Fraction		100	μg/L			<100	<100	<100
>C34 - C40 Fraction		100	μg/L			<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	μg/L			<100	<100	<100
 >C10 - C16 Fraction minus Naphthalene (F2) 	e	100	μg/L			<100	<100	<100
EP080: BTEXN		- G						
Benzene	71-43-2	1	μg/L	<1	15	<1	<1	<1
Toluene	108-88-3	2	μg/L	<2	16	<2	<2	<2
Ethylbenzene	100-41-4	2	μg/L	<2	16	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	17	<2	<2	<2
ortho-Xylene	95-47-6	2	μg/L	<2	17	<2	<2	<2
^ Total Xylenes		2	μg/L	<2	34	<2	<2	<2
^ Sum of BTEX		1	μg/L	<1	81	<1	<1	<1
Naphthalene	91-20-3	5	μg/L	<5	18	<5	<5	<5
EP075(SIM)S: Phenolic Compound St	urrogates							
Phenol-d6	13127-88-3	1.0	%			32.7	28.9	28.0
2-Chlorophenol-D4	93951-73-6	1.0	%			63.8	61.2	56.1
2.4.6-Tribromophenol	118-79-6	1.0	%			79.8	85.0	79.5
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%			70.6	67.4	67.7
Anthracene-d10	1719-06-8	1.0	%			64.0	65.1	59.5
4-Terphenyl-d14	1718-51-0	1.0	%			85.8	87.7	76.2
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	78.3	89.0	90.2	90.0	87.5
Toluene-D8	2037-26-5	2	%	86.6	96.6	95.2	97.5	96.8

Page : 6 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER		Sample ID		QC404	QC504	QC303	MW1	MW2	
(Matrix: WATER)				Trip Blank	Trip Spike 13				
Sampling date / tin		ng date / time	05-Feb-2024 00:00	05-Feb-2024 00:00 09-Feb-2024 00:00		09-Feb-2024 00:00	09-Feb-2024 00:00		
Compound CAS Number LO		LOR	Unit	ES2404239-001	ES2404239-002	ES2404239-003	ES2404239-004	ES2404239-005	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates -	Continued								
4-Bromofluorobenzene	460-00-4	2	%	112	125	126	127	125	

Page : 7 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

(Matrix: WATER)			Sample ID	MW3	MW6	QC103	
		Sampli	ng date / time	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2404239-006	ES2404239-007	ES2404239-008	
				Result	Result	Result	
EG005(ED093)F: Dissolved Metals by	ICP-AES						
Iron	7439-89-6	0.05	mg/L	8.01	<0.05	8.08	
Manganese	7439-96-5	0.01	mg/L	7.00	0.06	7.08	
EG020F: Dissolved Metals by ICP-MS	3						
Arsenic	7440-38-2	0.001	mg/L	<0.010	0.002	<0.010	
Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0001	<0.0010	
Chromium	7440-47-3	0.001	mg/L	<0.010	<0.001	<0.010	
Copper	7440-50-8	0.001	mg/L	<0.010	<0.001	<0.010	
Lead	7439-92-1	0.001	mg/L	<0.010	<0.001	<0.010	
Nickel	7440-02-0	0.001	mg/L	0.191	0.001	0.197	
Zinc	7440-66-6	0.005	mg/L	0.247	<0.005	0.253	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EK055G: Ammonia as N by Discrete	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.29	<0.01		
EK057G: Nitrite as N by Discrete Ana	alyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01		
EK058G: Nitrate as N by Discrete An	alyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.03	1.93		
EK059G: Nitrite plus Nitrate as N (NC	Ox) by Discrete Anal	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.03	1.93	0.02	
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	1.0	0.9	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser					
^ Total Nitrogen as N		0.1	mg/L	0.9	2.9	0.9	
EK067G: Total Phosphorus as P by D	Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	0.08	0.03	0.09	
EP075(SIM)B: Polynuclear Aromatic l	Hydrocarbons						
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	

Page : 8 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW6	QC103		
(massi tortal)		Samplii	ng date / time	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00		
Compound	CAS Number	LOR	Unit	ES2404239-006	ES2404239-007	ES2404239-008		
				Result	Result	Result		
EP075(SIM)B: Polynuclear Aromatic Hyd								
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0		
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0		
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0		
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0		
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0		
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0		
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	<1.0		
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	<1.0		
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0		
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	<1.0		
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0		
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	<1.0		
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	<1.0		
Sum of polycyclic aromatic hydrocarbons		0.5	μg/L	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	<0.5		
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20		
C10 - C14 Fraction		50	μg/L	<50	<50	<50		
C15 - C28 Fraction		100	μg/L	<100	<100	<100		
C29 - C36 Fraction		50	μg/L	<50	<50	<50		
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	<50		
EP080/071: Total Recoverable Hydrocar	rbons - NEPM 201	3 Fraction	ıs					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20		
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20		

Page : 9 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW3	MW6	QC103	
		Sampli	ng date / time	09-Feb-2024 00:00	09-Feb-2024 00:00	09-Feb-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2404239-006	ES2404239-007	ES2404239-008	
				Result	Result	Result	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201						
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	
>C16 - C34 Fraction		100	μg/L	<100	<100	<100	
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	<100	<100	
^ >C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L	<100	<100	<100	
EP080: BTEXN							
Benzene	71-43-2	1	μg/L	<1	<1	<1	
Toluene	108-88-3	2	μg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	
^ Total Xylenes		2	μg/L	<2	<2	<2	
^ Sum of BTEX		1	μg/L	<1	<1	<1	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	
EP075(SIM)S: Phenolic Compound Su	urrogates						
Phenol-d6	13127-88-3	1.0	%	29.1	25.9	24.8	
2-Chlorophenol-D4	93951-73-6	1.0	%	58.1	60.0	50.4	
2.4.6-Tribromophenol	118-79-6	1.0	%	75.2	90.8	65.4	
EP075(SIM)T: PAH Surrogates		12					
2-Fluorobiphenyl	321-60-8	1.0	%	65.2	73.3	57.3	
Anthracene-d10	1719-06-8	1.0	%	76.4	65.3	64.2	
4-Terphenyl-d14	1718-51-0	1.0	%	74.0	84.9	66.0	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	80.2	89.0	90.8	
Toluene-D8	2037-26-5	2	%	89.2	102	94.3	
4-Bromofluorobenzene	460-00-4	2	%	114	127	127	

Page : 10 of 10 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2404239** Page : 1 of 8

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : EMMA WALSH
 Telephone
 : +61-2-8784 8555

 Project
 : S20102 Wetherill Park WME
 Date Samples Received
 : 09-Feb-2024

 Site
 : --- Issue Date
 : 15-Feb-2024

Sampler : Rowan Faint No. of samples received : 8
Order number : ---- No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

ALS

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

	Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
M	atrix Spike (MS) Recoveries							
	EK055G: Ammonia as N by Discrete Analyser	ES2403164001	Anonymous	Ammonia as N	7664-41-7	Not		MS recovery not determined,
						Determined		background level greater than or
								equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER						
Quality Control Sample Type			Count		e (%)	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)F: Dissolved Metals by ICP-AES								
Clear Plastic Bottle - Nitric Acid; Filtered (EG005F)								
MW1,	MW2,	09-Feb-2024				13-Feb-2024	07-Aug-2024	✓
MW3,	MW6,							
QC103								
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
QC303,	MW1,	09-Feb-2024				12-Feb-2024	07-Aug-2024	✓
MW2,	MW3,							
MW6,	QC103							

Page : 3 of 8
Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Method			traction / Preparation		Analysis			
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Filtered (I	EG035F)								
QC303,	MW1,	09-Feb-2024				13-Feb-2024	08-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EK055G: Ammonia as N by Discrete Analy									
Clear Plastic Bottle - Sulfuric Acid (EK0550									
MW1,	MW2,	09-Feb-2024				14-Feb-2024	08-Mar-2024	✓	
MW3,	MW6								
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G)									
MW1,	MW2,	09-Feb-2024				10-Feb-2024	11-Feb-2024	✓	
MW3,	MW6								
EK059G: Nitrite plus Nitrate as N (NOx) b									
Clear Plastic Bottle - Sulfuric Acid (EK0590									
QC303,	MW1,	09-Feb-2024				14-Feb-2024	08-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EK061G: Total Kjeldahl Nitrogen By Discre	ete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK0610									
QC303,	MW1,	09-Feb-2024	14-Feb-2024	08-Mar-2024	✓	14-Feb-2024	08-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EK067G: Total Phosphorus as P by Discre									
Clear Plastic Bottle - Sulfuric Acid (EK0670				00.14			00.14		
QC303,	MW1,	09-Feb-2024	14-Feb-2024	08-Mar-2024	✓	14-Feb-2024	08-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EP075(SIM)B: Polynuclear Aromatic Hydro									
Amber Glass Bottle - Unpreserved (EP075)	• **								
QC303,	MW1,	09-Feb-2024	12-Feb-2024	16-Feb-2024	✓	15-Feb-2024	23-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								

Page : 4 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Watth: WATER		Evaluation: - Floriding time breach; Wi							
Method		Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Petroleum Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP071)									
QC303,	MW1,	09-Feb-2024	12-Feb-2024	16-Feb-2024	✓	14-Feb-2024	23-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
Amber VOC Vial - Sulfuric Acid (EP080)									
QC404 - Trip Blank		05-Feb-2024	13-Feb-2024	19-Feb-2024	✓	13-Feb-2024	19-Feb-2024	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
QC303,	MW1,	09-Feb-2024	13-Feb-2024	23-Feb-2024	✓	13-Feb-2024	23-Feb-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions								
Amber Glass Bottle - Unpreserved (EP071)									
QC303,	MW1,	09-Feb-2024	12-Feb-2024	16-Feb-2024	✓	14-Feb-2024	23-Mar-2024	✓	
MW2,	MW3,								
MW6,	QC103								
Amber VOC Vial - Sulfuric Acid (EP080)									
QC404 - Trip Blank		05-Feb-2024	13-Feb-2024	19-Feb-2024	✓	13-Feb-2024	19-Feb-2024	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
QC303,	MW1,	09-Feb-2024	13-Feb-2024	23-Feb-2024	✓	13-Feb-2024	23-Feb-2024	✓	
MW2,	MW3,								
MW6,	QC103								
EP080: BTEXN									
Amber VOC Vial - Sulfuric Acid (EP080)									
QC404 - Trip Blank,	QC504 - Trip Spike 13	05-Feb-2024	13-Feb-2024	19-Feb-2024	✓	13-Feb-2024	19-Feb-2024	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
QC303,	MW1,	09-Feb-2024	13-Feb-2024	23-Feb-2024	✓	13-Feb-2024	23-Feb-2024	✓	
MW2,	MW3,								
MW6,	QC103								

Page : 5 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

ne expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: × = Quality Control free						ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	9	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	6	37	16.22	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							

Page : 6 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Analytical Methods Method QC Evaluation Regular Actual Expected Matrix Spikes (MS) - Continued Ammonia as N by Discrete analyser 20 5.00 NEPM 2013 B3 & ALS QC Standard EK055G 1 5.00 1 Dissolved Mercury by FIMS 1 20 NEPM 2013 B3 & ALS QC Standard 5.00 5.00 EG035F 1 5 Dissolved Metals by ICP-AES 1 20.00 5.00 NEPM 2013 B3 & ALS QC Standard EG005F ✓ Dissolved Metals by ICP-MS - Suite A 1 20 NEPM 2013 B3 & ALS QC Standard EG020A-F 5.00 5.00 1 Nitrite and Nitrate as N (NOx) by Discrete Analyser EK059G 1 19 5.26 5.00 1 NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser 1 20 NEPM 2013 B3 & ALS QC Standard 5.00 5.00 EK057G ✓ PAH/Phenols (GC/MS - SIM) 0 9 0.00 5.00 NEPM 2013 B3 & ALS QC Standard EP075(SIM) × Total Kjeldahl Nitrogen as N By Discrete Analyser 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EK061G 5.00 1 Total Phosphorus as P By Discrete Analyser 2 37 5.41 5.00 1 NEPM 2013 B3 & ALS QC Standard EK067G TRH - Semivolatile Fraction 0 9 0.00 NEPM 2013 B3 & ALS QC Standard EP071 5.00 × TRH Volatiles/BTEX EP080 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)

Page : 8 of 8 Work Order : ES2404239

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary
			GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a
			sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Preparation Methods TKN/TP Digestion	Method EK061/EK067	<i>Matrix</i> WATER	Method Descriptions In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
		11	·
		11	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated

QUALITY CONTROL REPORT

Work Order : **ES2404239** Page : 1 of 8

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555

Project : \$20102 Wetherill Park WME Date Samples Received : 09-Feb-2024
Order number Date Analysis Commenced : 10-Feb-2024

C-O-C number ---- Issue Date 15-Feb-2024

Sampler : Rowan Faint

Site : ---Quote number : EN/000

No. of samples received : 8

No. of samples analysed : 8

Organic Coordinator

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Sydney Organics, Smithfield, NSW

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Edwandy Fadjar

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	solved Metals by ICF	P-AES (QC Lot: 5595964)							
ES2404239-004	MW1	EG005F: Manganese	7439-96-5	0.01 (0.10)*	mg/L	0.59	0.60	2.5	No Limit
		EG005F: Iron	7439-89-6	0.05 (0.10)*	mg/L	3.96	4.09	3.4	0% - 20%
EG020F: Dissolved Metals by ICP-MS (QC Lot: 5595960)									
ES2404140-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.022	0.021	7.0	No Limit
ES2403778-007	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EG035F: Dissolved I	Mercury by FIMS (Q	C Lot: 5595963)							
ES2403998-007	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2404239-003	QC303	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Page : 3 of 8
Work Order : ES2404239

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK055G: Ammonia a	s N by Discrete Analyser(C	(C Lot: 5599208)							
ES2403164-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01 (1.00)*	mg/L	947	992	4.7	0% - 20%
ES2404239-004	MW1	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.48	0.47	0.0	0% - 20%
EK057G: Nitrite as N	N by Discrete Analyser (QC	Lot: 5594300)							
ES2404227-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2404102-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 5599209)							
ES2404030-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	0.0	No Limit
ES2404239-004	MW1	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK061G: Total Kjeld	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 5599213)							
ES2404024-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (0.5)*	mg/L	37.1	38.0	2.5	0% - 20%
ES2404239-004	MW1	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.0	No Limit
EK067G: Total Phos	phorus as P by Discrete Ana	llyser (QC Lot: 5599212)							
ES2404157-007	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	1.07	1.04	2.6	0% - 20%
ES2404024-001	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.05)*	mg/L	6.01	5.89	2.1	0% - 20%
EK067G: Total Phos	phorus as P by Discrete Ana	llyser (QC Lot: 5599214)							
ES2404239-004	MW1	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.02	74.2	No Limit
ES2404300-007	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5596119)							
ES2403922-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2404239-004	MW1	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 5596119)							
ES2403922-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2404239-004	MW1	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5596119)								
ES2403922-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2404239-004	MW1	EP080: Benzene	71-43-2	1	μg/L "	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: ortho-Xylene	106-42-3 95-47-6	2	μg/L	<2	<2	0.0	No Limit
		LF 000. Ortilo-Aylette	35 47-0		μg/ L			0.0	140 Lillin

Page : 4 of 8 Work Order : ES2404239

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080: BTEXN (QC L	ot: 5596119) - continued									
ES2404239-004	MW1	EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit	

Page : 5 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method: Compound							Control Spike (LCS) Report		
Method: Compound				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 5									
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	109	82.0	114	
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	104	81.0	113	
EG020F: Dissolved Metals by ICP-MS (QCLot: 5595960)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	108	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	107	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	106	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.6	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	103	83.0	111	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	106	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	110	81.0	117	
EG035F: Dissolved Mercury by FIMS (QCLot: 5595963)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.9	83.0	105	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5	599208)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	97.0	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5594	300)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	96.5	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lvser (QCLot: 55	99209)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	104	91.0	113	
EK061G: Total Kieldahl Nitrogen By Discrete Analyser (0	OCL of: 5599213)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	89.7	69.0	101	
, ,				<0.1	1 mg/L	97.3	70.0	118	
				<0.1	5 mg/L	106	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (C	CLot: 5599212)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	92.7	71.3	126	
·				<0.01	0.442 mg/L	96.4	71.3	126	
				<0.01	1 mg/L	113	70.0	130	
EK067G: Total Phosphorus as P by Discrete Analyser (C	QCLot: 5599214)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	87.9	71.3	126	
				<0.01	0.442 mg/L	94.0	71.3	126	
				<0.01	1 mg/L	112	70.0	130	

Page : 6 of 8
Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 5594837)							
EP075(SIM): Naphthalene 91-20-3	1	μg/L	<1.0	5 μg/L	67.2	50.0	94.0
EP075(SIM): Acenaphthylene 208-96-8	1	μg/L	<1.0	5 μg/L	81.5	63.6	114
EP075(SIM): Acenaphthene 83-32-9	1	μg/L	<1.0	5 μg/L	66.6	62.2	113
EP075(SIM): Fluorene 86-73-7	1	μg/L	<1.0	5 μg/L	78.4	63.9	115
EP075(SIM): Phenanthrene 85-01-8	1	μg/L	<1.0	5 μg/L	74.8	62.6	116
EP075(SIM): Anthracene 120-12-7	1	μg/L	<1.0	5 μg/L	73.2	64.3	116
EP075(SIM): Fluoranthene 206-44-0	1	μg/L	<1.0	5 μg/L	79.8	63.6	118
EP075(SIM): Pyrene 129-00-0	1	μg/L	<1.0	5 μg/L	82.5	63.1	118
EP075(SIM): Benz(a)anthracene 56-55-3	1	μg/L	<1.0	5 μg/L	76.2	64.1	117
EP075(SIM): Chrysene 218-01-9	1	μg/L	<1.0	5 μg/L	77.6	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	83.1	61.7	119
EP075(SIM): Benzo(k)fluoranthene 207-08-9	1	μg/L	<1.0	5 μg/L	68.3	63.0	115
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	μg/L	<0.5	5 μg/L	75.4	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	1	μg/L	<1.0	5 μg/L	75.7	59.9	118
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	1	μg/L	<1.0	5 μg/L	75.7	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	1	μg/L	<1.0	5 μg/L	70.8	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5594836)							
EP071: C10 - C14 Fraction	50	μg/L	<50	400 μg/L	63.5	53.7	97.0
EP071: C15 - C28 Fraction	100	μg/L	<100	600 μg/L	79.4	63.3	107
EP071: C29 - C36 Fraction	50	μg/L	<50	400 μg/L	79.8	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5596119)							
EP080: C6 - C9 Fraction	20	μg/L	<20	260 μg/L	103	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 5594836)						
EP071: >C10 - C16 Fraction	100	μg/L	<100	500 μg/L	61.0	53.9	95.5
EP071: >C16 - C34 Fraction	100	μg/L	<100	700 μg/L	77.3	57.8	110
EP071: >C34 - C40 Fraction	100	μg/L	<100	300 μg/L	78.8	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	<u> </u>						
EP080: C6 - C10 Fraction C6_C10	20	μg/L	<20	310 μg/L	95.5	75.0	127
EP080: BTEXN (QCLot: 5596119)							
EP080: Benzene 71-43-2	1	μg/L	<1	10 μg/L	101	68.3	119
EP080: Toluene 108-88-3	2	μg/L	<2	10 μg/L	111	73.5	120
EP080: Ethylbenzene 100-41-4	2	μg/L	<2	10 μg/L	107	73.8	122
EP080: meta- & para-Xylene 108-38-3 106-42-3	2	μg/L	<2	10 μg/L	115	73.0	122

Page : 7 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 5596119) - continued								
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	108	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	97.2	75.5	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report							
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG005(ED093)F: D	Dissolved Metals by ICP-AES (QCLot: 5595964)									
ES2404239-005	MW2	EG005F: Manganese	7439-96-5	1 mg/L	100	70.0	130			
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 5595960)									
ES2404001-001	Anonymous	EG020A-F: Arsenic	7440-38-2	2 mg/L	87.8	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.5 mg/L	86.0	70.0	130			
		EG020A-F: Chromium	7440-47-3	2 mg/L	89.0	70.0	130			
		EG020A-F: Copper	7440-50-8	2 mg/L	81.5	70.0	130			
		EG020A-F: Lead	7439-92-1	2 mg/L	87.5	70.0	130			
		EG020A-F: Nickel	7440-02-0	2 mg/L	87.7	70.0	130			
		EG020A-F: Zinc	7440-66-6	2 mg/L	83.6	70.0	130			
EG035F: Dissolved Mercury by FIMS (QCLot: 5595963)										
ES2403888-013	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	88.7	70.0	130			
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 5599208)									
ES2403164-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	# Not	70.0	130			
					Determined					
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 5594300)									
ES2404102-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	101	70.0	130			
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 559	99209)								
ES2404030-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.7	70.0	130			
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 5599213)									
ES2404030-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	105	70.0	130			
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 5599212)									
ES2404030-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	115	70.0	130			
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 5599214)									
ES2404300-008	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	115	70.0	130			

Page : 8 of 8 Work Order : ES2404239

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080/071: Total	Petroleum Hydrocarbons (QCLot: 5596119)							
ES2403922-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	83.5	70.0	130	
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 5596119)						
ES2403922-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	79.0	70.0	130	
EP080: BTEXN (QCLot: 5596119)							
ES2403922-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	94.1	70.0	130	
		EP080: Toluene	108-88-3	25 μg/L	96.3	70.0	130	
		EP080: Ethylbenzene	100-41-4	25 μg/L	99.4	70.0	130	
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	106	70.0	130	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	25 μg/L	98.2	70.0	130	
		EP080: Naphthalene	91-20-3	25 μg/L	91.6	70.0	130	

Documentation	
of Custody	
Chain	

Seriversa					Chain of Custody Documentation	stody i	Docum	chiano	=					
Senversa Pty Ltd www.senversa.com.au ABN 89 132 231 380			Laboratory: Address: Contact: Phone:	ALS NSW Sample Receipt						Analysi	Analysis Required		Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.	minated present; trace
Job Number:		S20102	Purchase Order:			(\$7\				J	E - H	-		ş
		Wetherill Park WME	Quote No:	EN/103/21						2				
Sampled By:		Rowan Faint	Turn Around Time:	Standard 7 Days	S	1 8/H/				()	r: +			. 7
Project Manager:	<u> </u>	Emma Walsh	Page:	1 of		_				IM O				***
	rowan.fain Bec.Chappli	rowan.faint@senversa.com.au Bec.Chapple@senversa.com.au;	Phone/Mobile:	0408038593, 0404011544		(3T8/HЯ)		\ 	NT	нA ЭЭ) Э	1	1		· .
	Sample Information	ation		Container Information			314	8	pue	1900		רם		
Lab ID Sa	Sample ID Matrix *	Date	Time	Type / Code	al Bottles			-TN	- GI	ECC		ЮН		
	MW4 W	14/02/2024		P, VS x2, N, UA, VSA	9	×		×		×				
				•		44	•						7	
	11-11											-		
						30								
											,	-		
	×										EN	ironme	Environmental Division	2
	14 101										Syc	Iney		
					, jay-						> -	Vork Ord	er Reference	
	9 2 2											スクロ	404/22	
- 1 84 9 1					The second second						_			
												3		
				And the state of t	1808									
												E		
100												<u> </u>		
					2						Telept	hone: + 61.	Telephone: + 61-2-8784 8555	
					10 m						_			
											_	_		
Total	4. 11				9									
Sampler: Tattest that pospecifications were use	Sampler: Tattest that proper field sampling procedures in accordance with Senversa standard procedures and/or project specifications were used during the collection of these samples:	in accordance with Samples:	enversa standard proced		Sampler Name:	Rowa	Rowan Faint	Signature:	ure:	2Fall	nt	Date:		14/02/2024
Relinquished By:				Method of Shipment (if applicable):	:able):		Received by	ıy:						
Name/Signatūre:	Rowan Faint		Date: 14/2/24	Carrier / Reference #:			Name/Signature:		505 10th	3			Date: 14/2/24	
Of	700			Date/Time:			Of:	AUS.	2				15	
Name/Signature:			Ų	Carrier / Reference #:			Name/Signature:	ature:					Date:	
Of.				Date/Time:			Of:						Time:	
Name/Signature:			Date:	Carrier / Reference #:			Name/Signature:	ature:					Date:	
101				Data/Time.			75							•

Completed by:

Water Container Codes: P = Unpreserved Plastic; N = Nith Carid (HNO₃) Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide (NaOHyCadmium Hydroxide Preserved; S = Sodium Hydroxide Preserved Plastic; SH = Suphuric Preserved Plastic; VS = VOA Vial Sulphuric Preserved Plastic; NS = Suphuric Preserved Amber Glass; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Suphuric Preserved Bottle; ST = Sterile Bottle; UA = Unpreserved Amber Glass; L=Lugol's iodine preserved while plastic bottle; SW = sulfurcadd preserved wide mouth glass jar

Date/Time:

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2404752 Work Order

: SENVERSA PTY LTD Client Laboratory : Environmental Division Sydney

Contact : Rowan Faint Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

2000 SYDNEY NSW 2000

E-mail E-mail : rowan.faint@senversa.com.au : sandy.phan@alsglobal.com

Telephone Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page · 1 of 2

Order number Quote number : EB2023SENVER0001 (EN/000) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Site Sampler

: Rowan Faint

Dates

Date Samples Received : 14-Feb-2024 15:46 Issue Date : 14-Feb-2024 Scheduled Reporting Date : 20-Feb-2024 Client Requested Due 20-Feb-2024

Date

Delivery Details

Mode of Delivery Security Seal : Client Drop Off : Not Available

No of coolers/hoxes : 1 Temperature : 14.0, 12.1, 11.0'C - Ice

present

Receipt Detail No. of samples received / analysed : 1/1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 14-Feb-2024 Issue Date

Page

2 of 2 ES2404752 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

BEC CHAPPLE

- *AU Certificate of Analysis - NATA (COA)	Email	bec.chapple@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
Rowan Faint		
 *AU Certificate of Analysis - NATA (COA) 	Email	rowan.faint@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	rowan.faint@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	rowan.faint@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	rowan.faint@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	rowan.faint@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	rowan.faint@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

CERTIFICATE OF ANALYSIS

Work Order : E\$2404752

Client : SENVERSA PTY LTD

Contact : Rowan Faint

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : ---

Project : S20102 Wetherill Park WME

Order number : ----

C-O-C number : ----

Sampler : Rowan Faint

Site : ----

Quote number : EN/000

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Sandy Phan

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 14-Feb-2024 15:46

Date Analysis Commenced : 14-Feb-2024

Issue Date : 20-Feb-2024 12:37

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiSenior Chemist - InorganicsSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP080: The result for sample ES2404752-001 was confirmed by re-analysis.

Page : 3 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW4	 		
(Wattix, WATER)		Sampli	ng date / time	14-Feb-2024 00:00	 		
Compound	CAS Number	LOR	Unit	ES2404752-001	 		
				Result	 		
EG005(ED093)F: Dissolved Metals b	y ICP-AES						
Iron	7439-89-6	0.05	mg/L	2.04	 		
Manganese	7439-96-5	0.01	mg/L	5.03	 		
EG020F: Dissolved Metals by ICP-N	IS						
Arsenic	7440-38-2	0.001	mg/L	0.008	 		
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 		
Chromium	7440-47-3	0.001	mg/L	<0.001	 		
Copper	7440-50-8	0.001	mg/L	0.001	 		
Lead	7439-92-1	0.001	mg/L	<0.001	 		
Nickel	7440-02-0	0.001	mg/L	0.017	 		
Zinc	7440-66-6	0.005	mg/L	0.006	 		
EG035F: Dissolved Mercury by FIM	S						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 		
EK055G: Ammonia as N by Discrete	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.30	 		
EK057G: Nitrite as N by Discrete A	nalyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 		
EK058G: Nitrate as N by Discrete A	nalyser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 		
EK059G: Nitrite plus Nitrate as N (N	IOx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 		
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.2	 		
EK062G: Total Nitrogen as N (TKN -	NOx) by Discrete An	alyser					
^ Total Nitrogen as N		0.1	mg/L	1.2	 		
EK067G: Total Phosphorus as P by	Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	0.07	 		
EP075(SIM)B: Polynuclear Aromatic							
Naphthalene	91-20-3	1.0	μg/L	<1.0	 		

Page : 4 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW4	 	
(manus 1971 Ery		Sampli	ng date / time	14-Feb-2024 00:00	 	
Compound	CAS Number	LOR	Unit	ES2404752-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic F	lydrocarbons - Cont	inued				
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
Sum of polycyclic aromatic hydrocarbo	ns	0.5	μg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocar	bons					
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	 	
EP080/071: Total Recoverable Hydrod	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	μg/L	<20	 	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	 	

Page : 5 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER			Sample ID	MW4	 	
(Matrix: WATER)			Gampio 12	IVIVV	 	
		Sampli	ng date / time	14-Feb-2024 00:00	 	
Compound	CAS Number	LOR	Unit	ES2404752-001	 	
				Result	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201					
>C10 - C16 Fraction		100	μg/L	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	 	
>C34 - C40 Fraction		100	μg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	 	
(F2)						
EP080: BTEXN			ä			
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	2	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP075(SIM)S: Phenolic Compound Sui	rrogates					
Phenol-d6	13127-88-3	1.0	%	24.0	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	51.6	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	43.7	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	67.3	 	
Anthracene-d10	1719-06-8	1.0	%	72.2	 	
4-Terphenyl-d14	1718-51-0	1.0	%	71.5	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	88.3	 	
Toluene-D8	2037-26-5	2	%	97.6	 	
4-Bromofluorobenzene	460-00-4	2	%	106	 	

Page : 6 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137

QA/QC Compliance Assessment to assist with Quality Review

:ES2404752 **Work Order** Page : 1 of 7

: Environmental Division Sydney Client : SENVERSA PTY LTD Laboratory

: Rowan Faint Telephone : +61-2-8784 8555 Contact **Project** : S20102 Wetherill Park WME **Date Samples Received** : 14-Feb-2024 **Issue Date** Site : 20-Feb-2024

Sampler : Rowan Faint No. of samples received : 1

Order number No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7 Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005(ED093)F: Dissolved Metals by ICP-AES	ES2404752001	MW4	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Co	unt	Rate	e (%)	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
Dissolved Mercury by FIMS	EG035F	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	3	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)F: Dissolved Metals by ICP-AES							
Clear Plastic Bottle - Nitric Acid; Filtered (EG005F) MW4	14-Feb-2024				16-Feb-2024	12-Aug-2024	√
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW4	14-Feb-2024				16-Feb-2024	12-Aug-2024	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MW4	14-Feb-2024				19-Feb-2024	13-Mar-2024	√

Page : 3 of 7
Work Order : ES2404752

Amber VOC Vial - Sulfuric Acid (EP080)

MW4

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: **x** = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Due for extraction Evaluation Due for analysis Evaluation Date extracted Date analysed EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK055G) 14-Feb-2024 13-Mar-2024 MW4 19-Feb-2024 EK057G: Nitrite as N by Discrete Analyser Clear Plastic Bottle - Natural (EK057G) MW4 14-Feb-2024 14-Feb-2024 16-Feb-2024 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK059G) MW4 14-Feb-2024 19-Feb-2024 13-Mar-2024 EK061G: Total Kjeldahl Nitrogen By Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK061G) 14-Feb-2024 13-Mar-2024 16-Feb-2024 13-Mar-2024 MW4 16-Feb-2024 EK067G: Total Phosphorus as P by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK067G) 14-Feb-2024 16-Feb-2024 13-Mar-2024 16-Feb-2024 13-Mar-2024 MW4 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075(SIM)) 14-Feb-2024 15-Feb-2024 21-Feb-2024 17-Feb-2024 26-Mar-2024 MW4 EP080/071: Total Petroleum Hydrocarbons Amber Glass Bottle - Unpreserved (EP071) 21-Feb-2024 14-Feb-2024 15-Feb-2024 17-Feb-2024 26-Mar-2024 Amber VOC Vial - Sulfuric Acid (EP080) 15-Feb-2024 14-Feb-2024 15-Feb-2024 28-Feb-2024 28-Feb-2024 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Amber Glass Bottle - Unpreserved (EP071) 14-Feb-2024 15-Feb-2024 21-Feb-2024 17-Feb-2024 26-Mar-2024 MW4 Amber VOC Vial - Sulfuric Acid (EP080) 28-Feb-2024 28-Feb-2024 MW4 14-Feb-2024 15-Feb-2024 15-Feb-2024 EP080: BTEXN

14-Feb-2024

15-Feb-2024

28-Feb-2024

15-Feb-2024

28-Feb-2024

Page : 4 of 7
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	0	1	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	3	0.00	10.00	3¢	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	14	21.43	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	16	18.75	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							

Page : 5 of 7
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Analytical Methods Method QC Evaluation Regular Actual Expected Matrix Spikes (MS) - Continued Ammonia as N by Discrete analyser 10 10.00 5.00 NEPM 2013 B3 & ALS QC Standard EK055G 1 1 Dissolved Mercury by FIMS 1 NEPM 2013 B3 & ALS QC Standard 1 100.00 5.00 EG035F 1 Dissolved Metals by ICP-AES 1 100.00 5.00 NEPM 2013 B3 & ALS QC Standard EG005F ✓ Dissolved Metals by ICP-MS - Suite A 0 9 0.00 NEPM 2013 B3 & ALS QC Standard EG020A-F 5.00 × Nitrite and Nitrate as N (NOx) by Discrete Analyser EK059G 1 14 7.14 5.00 ✓ NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser 1 8 NEPM 2013 B3 & ALS QC Standard 12.50 5.00 EK057G ✓ PAH/Phenols (GC/MS - SIM) 0 3 0.00 5.00 NEPM 2013 B3 & ALS QC Standard EP075(SIM) × Total Kjeldahl Nitrogen as N By Discrete Analyser 1 14 7.14 5.00 NEPM 2013 B3 & ALS QC Standard EK061G 1 Total Phosphorus as P By Discrete Analyser 16 1 6.25 5.00 1 NEPM 2013 B3 & ALS QC Standard EK067G TRH - Semivolatile Fraction 0 3 0.00 NEPM 2013 B3 & ALS QC Standard EP071 5.00 × TRH Volatiles/BTEX EP080 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered
			samples, emitting a characteristic spectrum which is compared against matrix matched standards. This
			method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered
			prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions
			are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct
			mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are
			0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A
			bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic
			mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.
			Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM
			Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.
			This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.
			This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
		\\\\\ TEB	calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high
Analyser			temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined
	=::::::::::::::::::::::::::::::::::::::	MATER	colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Discrete Analyser	=::	VALATED	
Total Phosphorus as P By Discrete	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid
Analyser			digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with
			ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its
TRH - Semivolatile Fraction	ED074	\\\\\	concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRD - Semiyolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and
			quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This
			method is compliant with the QC requirements of NEPM Schedule B(3)

Page : 7 of 7
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary
			GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a
			sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Preparation Methods TKN/TP Digestion	Method EK061/EK067	<i>Matrix</i> WATER	Method Descriptions In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
			In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated

Address

QUALITY CONTROL REPORT

Address

Work Order : **ES2404752** Page : 1 of 6

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : Rowan Faint : Sandy Phan

SYDNEY NSW 2000

Telephone : ---- Telephone : +61-2-8784 8555

Project : \$20102 Wetherill Park WME Date Samples Received : 14-Feb-2024

Order number : ---- Date Analysis Commenced : 14-Feb-2024

C-O-C number : ---- Issue Date

: Level 24, 1 Market St, Sydney NSW 2000

Sampler : Rowan Faint

Site : ---Quote number : EN/000

No. of samples received : 1

No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

: 277-289 Woodpark Road Smithfield NSW Australia 2164

· 20-Feb-2024

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiSenior Chemist - InorganicsSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	solved Metals by ICP	-AES (QC Lot: 5604225)							
ES2404752-001	MW4	EG005F: Manganese	7439-96-5	0.01	mg/L	5.03	5.03	0.0	0% - 20%
		EG005F: Iron	7439-89-6	0.05	mg/L	2.04	2.06	0.6	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	C Lot: 5604222)							
ES2404563-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.025	0.024	0.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.002	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EK055G: Ammonia	as N by Discrete Analy	yser (QC Lot: 5607396)							
ME2400277-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.64	0.64	0.0	0% - 20%
ES2404468-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analyse	er (QC Lot: 5601798)							
ES2404552-003	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) t	by Discrete Analyser (QC Lot: 5607397)							
ES2404549-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.03	0.0	No Limit
ES2404468-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK061G: Total Kjeld	lahl Nitrogen By Discr	rete Analyser (QC Lot: 5607394)							
ES2404424-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (2.0)*	mg/L	30.2	29.2	3.5	0% - 50%

Page : 3 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER						Laboratory I	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK061G: Total Kjeld	lahl Nitrogen By Discr	ete Analyser (QC Lot: 5607394) - continued							
ES2404549-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit
EK067G: Total Phos	sphorus as P by Discre	ete Analyser (QC Lot: 5607395)							
ES2404424-001	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.20)*	mg/L	3.04	3.21	5.2	0% - 50%
ES2404549-002	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	s (QC Lot: 5601542)							
ES2404452-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2404516-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5601542)							
ES2404452-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2404516-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5601542)								
ES2404452-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2404516-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 4 of 6 Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 560)4225)							
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	110	82.0	114
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	106	81.0	113
EG020F: Dissolved Metals by ICP-MS (QCLot: 5604222)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	100	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.9	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.8	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	101	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.0	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	99.8	81.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 5604224)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.8	83.0	105
EK055G: Ammonia as N by Discrete Analyser (QCLot: 560	7396)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	91.4	90.0	114
EK057G: Nitrite as N by Discrete Analyser (QCLot: 560179	8)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	95.4	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	ser (QCLot: 56	(07397)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	106	91.0	113
EK061G: Total Kieldahl Nitrogen By Discrete Analyser (QC	Lot: 5607394)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	100	69.0	101
				<0.1	1 mg/L	114	70.0	118
				<0.1	5 mg/L	103	70.0	130
EK067G: Total Phosphorus as P by Discrete Analyser (QC	Lot: 5607395)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	94.0	71.3	126
				<0.01	0.442 mg/L	99.4	71.3	126
				<0.01	1 mg/L	104	70.0	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	: 56013 <u>97)</u>							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	72.2	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	76.1	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	91.3	62.2	113
<u> </u>				1				

Page : 5 of 6
Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 5601397							
EP075(SIM): Fluorene 86-73		μg/L	<1.0	5 μg/L	74.4	63.9	115
EP075(SIM): Phenanthrene 85-01		μg/L	<1.0	5 μg/L	74.8	62.6	116
EP075(SIM): Anthracene 120-12	-7 1	μg/L	<1.0	5 μg/L	78.2	64.3	116
EP075(SIM): Fluoranthene 206-44	-0 1	μg/L	<1.0	5 μg/L	80.7	63.6	118
EP075(SIM): Pyrene 129-00	-0 1	μg/L	<1.0	5 μg/L	78.1	63.1	118
EP075(SIM): Benz(a)anthracene 56-55	-3 1	μg/L	<1.0	5 μg/L	77.2	64.1	117
EP075(SIM): Chrysene 218-01	-9 1	μg/L	<1.0	5 μg/L	72.6	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene 205-99 205-82		μg/L	<1.0	5 μg/L	73.0	61.7	119
EP075(SIM): Benzo(k)fluoranthene 207-08	-9 1	μg/L	<1.0	5 μg/L	75.8	63.0	115
EP075(SIM): Benzo(a)pyrene 50-32	-8 0.5	μg/L	<0.5	5 μg/L	72.4	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	-5 1	μg/L	<1.0	5 μg/L	80.3	59.9	118
EP075(SIM): Dibenz(a.h)anthracene 53-70	-3 1	μg/L	<1.0	5 μg/L	71.9	61.2	117
EP075(SIM): Benzo(g.h.i)perylene 191-24	-2 1	μg/L	<1.0	5 μg/L	75.9	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5601398)							
EP071: C10 - C14 Fraction -	50	μg/L	<50	400 μg/L	79.5	53.7	97.0
EP071: C15 - C28 Fraction -	100	μg/L	<100	600 μg/L	84.9	63.3	107
EP071: C29 - C36 Fraction -	50	μg/L	<50	400 μg/L	88.8	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5601542)							
EP080: C6 - C9 Fraction	20	μg/L	<20	260 μg/L	81.5	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 5601398)						
EP071: >C10 - C16 Fraction -	100	μg/L	<100	500 μg/L	66.2	53.9	95.5
EP071: >C16 - C34 Fraction -	100	μg/L	<100	700 μg/L	74.6	57.8	110
EP071: >C34 - C40 Fraction -	100	μg/L	<100	300 μg/L	73.7	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 5601542)						
EP080: C6 - C10 Fraction C6_C	10 20	μg/L	<20	310 μg/L	75.7	75.0	127
EP080: BTEXN (QCLot: 5601542)							
EP080: Benzene 71-43	-2 1	μg/L	<1	10 μg/L	91.4	68.3	119
EP080: Toluene 108-88	-3 2	μg/L	<2	10 μg/L	99.4	73.5	120
EP080: Ethylbenzene 100-41	-4 2	μg/L	<2	10 μg/L	99.9	73.8	122
EP080: meta- & para-Xylene 108-38 106-42		μg/L	<2	10 μg/L	105	73.0	122
EP080: ortho-Xylene 95-47	-6 2	μg/L	<2	10 μg/L	102	76.4	123
EP080: Naphthalene 91-20	-3 5	μg/L	<5	10 μg/L	99.3	75.5	124

Page : 6 of 6 Work Order : ES2404752

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)F: [Dissolved Metals by ICP-AES (QCLot: 5604225)						
ES2404752-001	MW4	EG005F: Manganese	7439-96-5	1 mg/L	# Not Determined	70.0	130
EG035F: Dissolve	d Mercury by FIMS (QCLot: 5604224)				Determined		
ES2404752-001	MW4	EG035F: Mercury	7439-97-6	0.01 mg/L	93.8	70.0	130
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 5607396)						
ES2404468-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	85.7	70.0	130
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 5601798)						
ES2404552-003	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	92.2	70.0	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 56						
ES2404468-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.8	70.0	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 5607394)						
ES2404468-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	90.6	70.0	130
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 5607395)						
ES2404468-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	90.5	70.0	130
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 5601542)						
ES2404452-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	81.8	70.0	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCI	.ot: 5601542)					
ES2404452-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	76.0	70.0	130
EP080: BTEXN (C	(CLot: 5601542)						
ES2404452-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	99.7	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	98.6	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	98.9	70.0	130
		, , , , , , , , , , , , , , , , , , ,	108-38-3	25 μg/L	103	70.0	130
			106-42-3				100
		a. ecc. craio Ayiene	95-47-6	25 μg/L	99.0	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	94.7	70.0	130

senversa

Chain of Custody Documentation

Senversa Pty I				Laboratory:								Δ	nalysis R	equire	4	-				
www.senversa. ABN 89 132 23	com.au		~	Address: Contact: Phone:	ALS NSW Sample Receipt		Level											Comments: e.g. Highly contaminate sample; hazardous materials prese LORs etc.		
Job Number:		S20	0102	Purchase Order:			rd Le	Level		Total Phosphorus	sta sa sa									
Project Name:		Wetherill	Park WME	Quote No:	EN\103\	121	Standard	ard L	Mn)	hosp	W 8/8									
Sampled By:	•	Rowa	ın Faint	Turn Around Time:	Standa	rd		Standard	and	otal P	enols	7								
Project Manag	er:	Emma	a Walsh	Page:	1	of 1	15H Solids	1	S (Fe	nd To	H/H	TEX	0		.					
Email Report 1	o:	emma.walsh@	senversa.com.au senversa.com.au senversa.com.au	Phone/Mobile:	0420 218	0420 218 472		WATER - EA025H Suspended Solids	Suspended Solids WATER - EG005F Dissolved Metals (Dissolved Metals (H WATER - NT-11 Total Nitrogen and T	WATER - W-27 TRH/BTEXN/PAH/Phenols/8 Metals	WATER - W-18 TRH(C6 - C9)/BTEXN	- EP080							
		Sample Informatio			Container Info		TER -	TER	TER	HE IN	TER 1/BT	TER (C6	WATER - BTEXN				40LD			
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	WATER Total D	WA	WA	WA	X X	NAT TRI	WA				오			
	SW1	Water	9/07/2024	AM		6	Х	X	X	X	X									
	SW2	Water	9/07/2024	AM		6	Х	X	X	X	X									
	QC405	Water	9/07/2024	AM		1						X					and the state of the state of			
	QC505	Water	9/07/2024	AM		1							X							
		9 N				Envir	onm	enta	l Divi	sion										
			1			Sydn	ey			0.011										
						Siydn Wo	rk Or	der Re	eferend	ce										
			FED			\bot E	S2	:42	25	53										
										-									-	
							HIL		MATE I											
								144	100					-	-	-				
							N.V		113								200			
							1 1 1 1 1 1 1 1 1 1	(Martin	II., i je i											
						Te ephon	e: +61	1-2-8784	3555											
							L	e e												
							ļ	ļ		ļ	 									
															00202					
Total						14														
	st that proper field sar were used during the			Senversa standard prod	cedures and/or project	Sampler Name:		Rowa	an Faint		Signat	ure:	Q:	au	X		Date:	. 9	9/07/2024	
Relinquished	Ву:				Method of Shipment (if a	applicable):			Receiv	ed by:				1				-		
Name/Signatur	e:	Rowan Faint		Date: 9/7/2024						Signatur	e: 7	TAD	1	/6				Date:		
Of:		Senversa		Time: 12:30 PM	: 12:30 PM Date/Time:				Of:	~			//	A				Time:		
	lame/Signature: Date: Carrier / Reference #:		Carrier / Reference #: Date/Time:				Name/s Of:	Signatur	e:		-6	MAR	4	12:4	10/	Date: Time:				
Of: Name/Signatur	0'			Time:	Carrier / Reference #:					Signatur	о.							Date:		
Name/Signatur Of:	ь.				Date/Time:				Of:	Jignatur	·.							Time:		
V =	Time: Water Container Codes: P = Unpreserved Plastic; N = Nitric Acid (HNO ₁) Preserved Plastic; ORC = V = VOA Vial Hydochloric Acid (HCl) Preserved; VS = VOA Vial Sulphuric Preserved; VSA = Sulphuric F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles;			Preserved Amber Glass; H = He	CI Preserved Plastic; F	IS = HCI	Preserve	ed Speciat	ion Battle	e; SP = S	Julphuric F	reserve	l Plastic;				served plastic;			

Completed by: _____ Checked by: ____

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2422553

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : sandy.phan@alsqlobal.com

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555 Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 2

 Order number
 : --- Quote number
 : EB2023SENVER0001 (EN/000)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : Rowan Faint

Dates

Site

Date Samples Received : 09-Jul-2024 12:40 Issue Date : 09-Jul-2024 Client Requested Due : 16-Jul-2024 Scheduled Reporting Date : 16-Jul-2024

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 3.6'C 4.4'C - Ice present

Receipt Detail : No. of samples received / analysed : 4 / 4

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 09-Jul-2024 Issue Date

Page

2 of 2 ES2422553 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. Fotal Dissolved Solids - Standard Level otal Nitrogen and Total Phosphorus If no sampling time is provided, the sampling time will TRH/BTEXN/PAH/Phenols/8 Metals Suspended Solids - Standard Level default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time WATER - W-18 IRH(C6 - C9)/BTEXN component VATER - EA015H VATER - EG020F VATER - EA025H VATER - NT-11 Matrix: WATER VATER - E Sampling date / Sample ID Laboratory sample time ES2422553-001 09-Jul-2024 00:00 ✓ ES2422553-002 09-Jul-2024 00:00 SW2 ES2422553-003 09-Jul-2024 00:00 QC405 ES2422553-004 09-Jul-2024 00:00 QC505

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

EMMA WALSH

- *AU Certificate of Analysis - NATA (COA)	Email	Emma.Walsh@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
SUPPLIER ACCOUNTS		_
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		U

CERTIFICATE OF ANALYSIS

Work Order : ES2422553

Client SENVERSA PTY LTD

Contact EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number

C-O-C number

Sampler : Rowan Faint

Site

Quote number : EN/000

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Sandy Phan

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 09-Jul-2024 12:40

Date Analysis Commenced : 10-Jul-2024

Issue Date : 16-Jul-2024 13:48

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Sydney Organics, Smithfield, NSW Edwandy Fadjar Organic Coordinator

Page : 2 of 7

Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

Page : 3 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER			Sample ID	SW1	SW2	QC405	QC505	
(Matrix: WATER)	Sampling date / time		09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00		
Compound	CAS Number	LOR	Unit	ES2422553-001	ES2422553-002	ES2422553-003	ES2422553-004	
Compound	CAS Number	LON	Onn	Result	Result	Result	Result	
EA015: Total Dissolved Solids dried at 18	80 + 5 °C			resuit	resuit	resuit	resuit	
Total Dissolved Solids @180°C		10	mg/L	228	282			
EA025: Total Suspended Solids dried at	104 + 2°C							
Suspended Solids (SS)		5	mg/L	7260	90			
EG020F: Dissolved Metals by ICP-MS	11 11 11 11							
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Chromium	7440-47-3	0.001	mg/L	0.001	0.001			
Copper	7440-50-8	0.001	mg/L	0.003	0.004			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.045	0.015			
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001			
Zinc	7440-66-6	0.005	mg/L	<0.005	0.023			
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05			
EG035F: Dissolved Mercury by FIMS	1 11 1	Till the second						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			
EK059G: Nitrite plus Nitrate as N (NOx)	bv Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	0.32	0.51			
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	22.6	3.8			
EK062G: Total Nitrogen as N (TKN + NOx	() by Discrete Ar	nalyser						
^ Total Nitrogen as N		0.1	mg/L	22.9	4.3			
EK067G: Total Phosphorus as P by Disci	rete Analyser							
Total Phosphorus as P		0.01	mg/L	6.68	0.63			
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	μg/L	<1.0	<1.0			
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0			
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0			

Page : 4 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	SW2	QC405	QC505	
		Sampli	ng date / time	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2422553-001	ES2422553-002	ES2422553-003	ES2422553-004	
				Result	Result	Result	Result	
EP075(SIM)A: Phenolic Compounds								
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0			
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0			
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0			
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0			
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0			
4-Chloro-3-methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0			
2.4.6-Trichlorophenol	88-06-2	1.0	μg/L	<1.0	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	μg/L	<1.0	<1.0			
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0			
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0			
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0			
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0			
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0			
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0			
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0			
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0			
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0			
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0			
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0			
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0			
^ Sum of polycyclic aromatic hydrocar	bons	0.5	μg/L	<0.5	<0.5			

Page : 5 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	SW2	QC405	QC505	
		Sampli	ng date / time	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2422553-001	ES2422553-002	ES2422553-003	ES2422553-004	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5			
EP080/071: Total Petroleum Hydroca	ırbons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20		
C10 - C14 Fraction		50	μg/L	<50	<50			
C15 - C28 Fraction		100	μg/L	290	<100			
C29 - C36 Fraction		50	μg/L	130	<50			
^ C10 - C36 Fraction (sum)		50	μg/L	420	<50			
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20		
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20		
>C10 - C16 Fraction		100	μg/L	<100	<100			
>C16 - C34 Fraction		100	μg/L	380	<100			
>C34 - C40 Fraction		100	μg/L	<100	<100			
^ >C10 - C40 Fraction (sum)		100	μg/L	380	<100			
^ >C10 - C16 Fraction minus Naphthaler (F2)	ne	100	μg/L	<100	<100			
EP080: BTEXN	11 19 13							
Benzene	71-43-2	1	μg/L	<1	<1	<1	14	
Toluene	108-88-3	2	μg/L	<2	<2	<2	15	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	16	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	16	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	14	
^ Total Xylenes		2	μg/L	<2	<2	<2	30	
^ Sum of BTEX		1	μg/L	<1	<1	<1	75	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	21	
EP075(SIM)S: Phenolic Compound S	Gurrogates							
Phenol-d6	13127-88-3	1.0	%	27.9	19.6			

Page : 6 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SW1	SW2	QC405	QC505	
		Sampli	ng date / time	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	09-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2422553-001	ES2422553-002	ES2422553-003	ES2422553-004	
				Result	Result	Result	Result	
EP075(SIM)S: Phenolic Compound Su	rrogates - Continued	1						
2-Chlorophenol-D4	93951-73-6	1.0	%	55.9	41.2			
2.4.6-Tribromophenol	118-79-6	1.0	%	65.8	41.5			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	57.5	51.0			
Anthracene-d10	1719-06-8	1.0	%	59.7	58.5			
4-Terphenyl-d14	1718-51-0	1.0	%	70.5	60.3			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	113	114	82.2	90.8	
Toluene-D8	2037-26-5	2	%	115	114	90.9	103	
4-Bromofluorobenzene	460-00-4	2	%	109	106	106	106	

Page : 7 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2422553** Page : 1 of 7

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact: EMMA WALSHTelephone: +61-2-8784 8555Project: \$20102 Wetherill Park WMEDate Samples Received: 09-Jul-2024

Site : --- Issue Date : 16-Jul-2024

Sampler : Rowan Faint No. of samples received : 4
Order number : ---- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, where applicable to the methodology, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7 Work Order : ES2422553

 Client
 : SENVERSA PTY LTD

 Project
 · S20102 Wetherill Park WME

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA015: Total Dissolved Solids dried at 180 ± 5 °C									
Clear Plastic Bottle - Natural (EA015H) SW1,	SW2	09-Jul-2024				11-Jul-2024	16-Jul-2024	✓	
EA025: Total Suspended Solids dried at 104 ± 2°C									
Clear Plastic Bottle - Natural (EA025H) SW1,	SW2	09-Jul-2024				11-Jul-2024	16-Jul-2024	✓	
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) SW1,	SW2	09-Jul-2024				10-Jul-2024	05-Jan-2025	✓	
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) SW1,	SW2	09-Jul-2024				12-Jul-2024	06-Aug-2024	✓	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G) SW1,	SW2	09-Jul-2024				11-Jul-2024	06-Aug-2024	✓	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK061G) SW1,	SW2	09-Jul-2024	11-Jul-2024	06-Aug-2024	1	11-Jul-2024	06-Aug-2024	✓	
EK067G: Total Phosphorus as P by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK067G) SW1,	SW2	09-Jul-2024	11-Jul-2024	06-Aug-2024	✓	11-Jul-2024	06-Aug-2024	✓	

Page : 3 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: WATER					Lvaluation	. × = Holding time	breach; ▼ = withi	ir noluling time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)A: Phenolic Compounds								
Amber Glass Bottle - Unpreserved (EP075(SIM)) SW1,	SW2	09-Jul-2024	10-Jul-2024	16-Jul-2024	✓	11-Jul-2024	19-Aug-2024	√
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM)) SW1,	SW2	09-Jul-2024	10-Jul-2024	16-Jul-2024	✓	11-Jul-2024	19-Aug-2024	√
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071) SW1,	SW2	09-Jul-2024	10-Jul-2024	16-Jul-2024	✓	11-Jul-2024	19-Aug-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080) QC405		09-Jul-2024	11-Jul-2024	23-Jul-2024	1	11-Jul-2024	23-Jul-2024	√
Amber VOC Vial - Sulfuric Acid (EP080) SW1,	SW2	09-Jul-2024	11-Jul-2024	23-Jul-2024	1	12-Jul-2024	23-Jul-2024	√
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) SW1,	SW2	09-Jul-2024	10-Jul-2024	16-Jul-2024	1	11-Jul-2024	19-Aug-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080) QC405		09-Jul-2024	11-Jul-2024	23-Jul-2024	1	11-Jul-2024	23-Jul-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080) SW1,	SW2	09-Jul-2024	11-Jul-2024	23-Jul-2024	1	12-Jul-2024	23-Jul-2024	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) QC405,	QC505	09-Jul-2024	11-Jul-2024	23-Jul-2024	1	11-Jul-2024	23-Jul-2024	√
Amber VOC Vial - Sulfuric Acid (EP080) SW1,	SW2	09-Jul-2024	11-Jul-2024	23-Jul-2024	✓	12-Jul-2024	23-Jul-2024	✓

Page : 4 of 7 Work Order ES2422553

Client SENVERSA PTY LTD S20102 Wetherill Park WME Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary	y of Outliers.						
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	4	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	5	40	12.50	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	5	39	12.82	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	7	42.86	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	11	27.27	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: **x** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Analytical Methods Method QC Reaular Expected Evaluation Actual Matrix Spikes (MS) - Continued PAH/Phenols (GC/MS - SIM) EP075(SIM) 0 4 0.00 5.00 NEPM 2013 B3 & ALS QC Standard Total Kjeldahl Nitrogen as N By Discrete Analyser 1 7 14.29 NEPM 2013 B3 & ALS QC Standard EK061G 5.00 1 Total Phosphorus as P By Discrete Analyser 11 EK067G 1 9.09 5.00 ✓ NEPM 2013 B3 & ALS QC Standard TRH - Semivolatile Fraction 0 5 NEPM 2013 B3 & ALS QC Standard 0.00 5.00 EP071 x TRH Volatiles/BTEX 2 40 NEPM 2013 B3 & ALS QC Standard EP080 5.00 5.00 ✓

Page : 6 of 7
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)

Page : 7 of 7 Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Analytical Methods	Method	Matrix	Method Descriptions
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

QUALITY CONTROL REPORT

Work Order : **ES2422553** Page : 1 of 9

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555

Project : \$20102 Wetherill Park WME Date Samples Received : 09-Jul-2024
Order number : ---- Date Analysis Commenced : 10-Jul-2024

C-O-C number : ---- Issue Date : 16-Jul-2024

Sampler : Rowan Faint

Site : ---

No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with

not be reproduced, except in full.

This Quality Control Report contains the following information:

: EN/000

: 4

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 9 Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	C (QC Lot: 5918870)								
EN2406536-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	444	454	2.3	0% - 20%	
EN2406634-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	810	810	0.0	0% - 20%	
ES2422089-005	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	32200	32300	0.2	0% - 20%	
ES2422511-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	16	32	68.8	No Limit	
EA025: Total Susper	nded Solids dried at 104 ± 2°	C (QC Lot: 5918869)								
EN2406536-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	8	8	0.0	No Limit	
EN2406634-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	11	12	13.0	No Limit	
ES2422089-005	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit	
ES2422511-004	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	18	25	30.2	No Limit	
EG020F: Dissolved I	Metals by ICP-MS (QC Lot: 5	914847)								
ES2422557-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.005	0.005	0.0	No Limit	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.001	0.001	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.001	<0.001	0.0	No Limit	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.048	0.048	0.0	0% - 20%	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.004	0.004	0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.062	0.062	0.0	0% - 50%	
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit	
EG035F: Dissolved I	Mercury by FIMS (QC Lot: 5	914848)								

Page : 3 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035F: Dissolved N	Mercury by FIMS (QC Lot: 8	5914848) - continued							
ES2422557-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Dis	crete Analyser (QC Lot: 5918576)							
ES2422915-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.55	0.62	11.7	0% - 20%
ES2422660-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ar	nalyser (QC Lot: 5918574)							
ES2422553-001	SW1	EK061G: Total Kjeldahl Nitrogen as N		0.1 (2.0)*	mg/L	22.6	25.4	11.9	0% - 50%
ES2422915-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (0.5)*	mg/L	19.6	19.9	1.3	0% - 20%
EK067G: Total Phosp	phorus as P by Discrete An	alyser (QC Lot: 5918575)							
ES2422553-001	SW1	EK067G: Total Phosphorus as P		0.01 (0.20)*	mg/L	6.68	6.55	2.0	0% - 20%
ES2422915-002	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.05)*	mg/L	0.17	0.18	7.5	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5915799)							
EN2406506-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2422255-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5915806)							
ES2422453-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2422604-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Rec	coverable Hydrocarbons - N	NEPM 2013 Fractions (QC Lot: 5915799)							
EN2406506-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2422255-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Rec	coverable Hydrocarbons - N	NEPM 2013 Fractions (QC Lot: 5915806)							
ES2422453-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
ES2422604-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC I	Lot: 5915799)								
EN2406506-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3					0.0	N. 1
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
F02422255 004	Ananymaya	EP080: Naphthalene	91-20-3 71-43-2	5 1	μg/L	<5 <1	<5 <1	0.0	No Limit
ES2422255-001	Anonymous	EP080: Benzene		2	μg/L				No Limit
		EP080: Toluene	108-88-3 100-41-4	2	μg/L	<2 <2	<2 <2	0.0	No Limit No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L μg/L	<2	<2	0.0	No Limit No Limit
		EP080: meta- & para-Xylene	108-38-3	-	µg/L	~~	-2	0.0	INO LITTIL
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 4 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 5915806)								
ES2422453-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES2422604-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	2	2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 5 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 5918	8870)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	101	87.0	109	
				<10	293 mg/L	108	75.2	126	
				<10	2410 mg/L	109	83.0	124	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 591	18869)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	96.0	83.0	129	
				<5	1000 mg/L	98.6	82.0	110	
				<5	928 mg/L	96.9	83.0	118	
EG020F: Dissolved Metals by ICP-MS (QCLot: 5914847)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	93.5	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.0	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.3	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	91.3	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.4	83.0	111	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	91.4	82.0	110	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	91.1	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	81.0	117	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	91.5	82.0	112	
EG035F: Dissolved Mercury by FIMS (QCLot: 5914848)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.6	83.0	105	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	(QCLot: 59	18576)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	104	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot	: 5918574)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	95.3	69.0	123	
				<0.1	1 mg/L	99.7	70.0	123	
				<0.1	5 mg/L	100	70.0	123	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot:	5918575)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	99.0	71.3	126	
				<0.01	0.442 mg/L	92.1	71.3	126	
				<0.01	1 mg/L	102	70.0	130	
EP075(SIM)A: Phenolic Compounds (QCLot: 5912236)									
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	38.1	24.5	61.9	

Page : 6 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)A: Phenolic Compounds (QCLot: 5912236)	- continued							
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	73.8	52.0	90.0
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 μg/L	67.0	51.0	91.0
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 μg/L	58.7	44.0	88.0
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 μg/L	73.1	48.0	100
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	67.5	49.0	99.0
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	71.7	53.0	105
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	76.0	57.0	105
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	75.2	53.0	99.0
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	67.4	50.0	106
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	79.4	51.0	105
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	38.5	10.0	95.0
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 5912236)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	68.0	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	69.8	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	70.5	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	70.6	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	85.4	62.6	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	85.0	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	84.4	63.6	118
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	84.9	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	78.0	64.1	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	81.0	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	μg/L	<1.0	5 μg/L	83.5	61.7	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 μg/L	75.8	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	81.6	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	76.6	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	80.0	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	78.2	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 591	2235)							
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	59.4	53.7	97.0
EP071: C15 - C28 Fraction		100	μg/L	<100	600 µg/L	65.1	63.3	107
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	92.2	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 591	5799)							

Page : 7 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5915)	799) - continue							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	79.8	75.0	127
EP080/071: Total Petroleum Hydrocarbons (QCLot: 59158	306)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	85.9	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 5912235)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	58.1	53.9	95.5
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	61.8	57.8	110
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	86.6	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 5915799)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	78.1	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 5915806)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	87.0	75.0	127
EP080: BTEXN (QCLot: 5915799)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	91.5	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	96.9	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	92.5	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	90.9	73.0	122
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	87.8	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	96.8	75.5	124
EP080: BTEXN (QCLot: 5915806)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	94.8	68.3	119
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	107	73.5	120
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	99.6	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	98.0	73.0	122
ED000, atha Vidana	106-42-3 95-47-6	2	μg/L	<2	10 μg/L	400	76.4	400
EP080: ortho-Xylene	91-20-3	5		<5		100	75.4 75.5	123
EP080: Naphthalene	91-20-3	ð	μg/L	<5	10 μg/L	102	70.5	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High

Page : 8 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER		M	atrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5914847)						
ES2422553-002	SW2	EG020A-F: Arsenic	7440-38-2	1 mg/L	97.3	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.2	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	95.2	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	96.2	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	91.9	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	98.0	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	95.2	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	103	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 5914848)						
ES2422553-001	SW1	EG035F: Mercury	7439-97-6	0.01 mg/L	88.0	70.0	130
EK059G: Nitrite plu	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 5	918576)					
ES2422660-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	114	70.0	130
EK061G: Total Kiel	dahl Nitrogen By Discrete Analyser (QCLot: 5918574						
ES2422553-002	SW2	EK061G: Total Kjeldahl Nitrogen as N		50 mg/L	88.9	70.0	130
	sphorus as P by Discrete Analyser(QCLot: 5918575)			3			
ES2422553-002	SW2	EK067G: Total Phosphorus as P		10 mg/L	102	70.0	130
	etroleum Hydrocarbons (QCLot: 5915799)	Ertoor of Total Thoophorus do T		3			
EN2406506-001	Anonymous	EDOOD, CC. CO Frantier	<u></u>	325 μg/L	73.9	70.0	130
	-	EP080: C6 - C9 Fraction		323 μg/L	75.9	70.0	150
	etroleum Hydrocarbons (QCLot: 5915806)						
ES2422604-001	Anonymous	EP080: C6 - C9 Fraction		325 μg/L	77.2	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(Q	CLot: 5915799)					
EN2406506-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	75.9	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (Qu	CLot: 5915806)					
ES2422604-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	76.3	70.0	130
EP080: BTEXN (QC	CLot: 5915799)						
EN2406506-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	95.3	70.0	130
	, then, mead	EP080: Toluene	108-88-3	25 μg/L	99.6	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	106	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	104	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	103	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	109	70.0	130
EP080: BTEXN (QC	CLot: 5915806)						
ES2422604-001	Anonymous	EP080: Benzene	71-43-2	25 μg/L	81.6	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	92.5	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	87.1	70.0	130

Page : 9 of 9
Work Order : ES2422553

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable i	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QCLot: 5915806) - continued						
ES2422604-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	25 μg/L	85.9	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	89.1	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	104	70.0	130

senversa

Chain of Custody Documentation

13096 Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc. Please forward to Eurofins 41/11 Time: 571 Date: Date: Time: ОГО Date: | Time: | Date/Time: | Date/Tim REGIMA NT bns 9 ×× MATER - EP080 NXETX × Thenh NATER - W-18 FRH(C6 - C9)/BTEXN Signature: NSTER - W-26 REH/BTEXN/PAH/8 Metals × × × × Name/Signature: Vame/Signature Name/Signature: WATER - EG005F × × × Rowan Faint × Total Bottles Sampler Name 47 Container Information Method of Shipment (if applicable) of 1 0420 218 472 1xP, 2xVSA, 1xN, 1xUA, 1xSP xP, 2xVSA, 1xN, 1xUA, 1xSP Standard EN1103\21 2xVSA, 1xN, 1xUA, 1xSP 2xVSA, 1xN, 1xUA, 1xSP 2xVSA, 1xN, 1xUA, 1xSP Type / Code Sarrier / Reference #: Carrier / Reference #: Samier / Reference #: Sampler: I attest that proper field sampling procedures in accordance with Senversa standard procedures and/or project VSA VSA Sample Receipt Date/Time: ALS NSW Turn Around Time: Purchase Order: Phone/Mobile: Time Laboratory: Address: Contact: Phone: Quote No: Page: Date: Date: Date: Time: Sydney Work Order Reference ES2423038 Environmental Division 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 11/07/2024 emma.walsh@senversa.com.au Emma Walsh rowan.faint@senversa.com.au Date Wetherill Park WME Rowan Faint specifications were used during the collection of these samples: Talephone : + 61-2-878* 8555 Sample Information Matrix * Water Rowan Faint Sample ID QC405 QC204 QC304 QC104 QC505 MW6 MW2 MW3 MW1 MW4 Senversa Pty Ltd www.senversa.com.au ABN 89 132 231 380 oject Manager: mail Report To: Relinquished By: lame/Signature: Vame/Signature: dame/Signature: roject Name ampled By: Lab ID 2 20 1 0 3 2 1

Completed by: Checked by:

V = VOA Vial Hydocholro Add (HOI) Preserved: VS = VOA Vial Sulphurio Preserved. VSA = Sulphurio Preserved Amber Glass; H = HOI Preserved Plastic; HS = HOI Preserved Speciation Bottle; SV = Sulphurio Preserved Dottle; BA Preserved Bottle; ST = Sterile Bottle; UA = Unpriserved Amber Glass; L= Lugot's lodine preserved white plastic bottle; SW= sulfurir and preserved wide mouth glass jar

S20102 GW COC

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2423038

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

2000

E-mail : Emma.Walsh@senversa.com.au E-mail : sandy.phan@alsqlobal.com

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555 Facsimile : ---- Facsimile : +61-2-8784 8500

Project : S20102 Wetherill Park WME Page : 1 of 3

 Order number
 : --- Quote number
 : EB2023SENVER0001 (EN/000)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : Rowan Faint

Dates

Date Samples Received : 12-Jul-2024 17:15 Issue Date : 12-Jul-2024
Client Requested Due : 22-Jul-2024
Scheduled Reporting Date : 22-Jul-2024

Date

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 18.2'C, 15.3'C & 12.4'C -

Ice present

Receipt Detail : No. of samples received / analysed : 9 / 9

General Comments

Delivery Details

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- The sampling date listed on the COC is 11/07/24, however the soil jar was dated 08/07/24 for sample 8 & 9.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 12-Jul-2024 Issue Date

Page

: 2 of 3 : ES2423038 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determin tasks, that are included in the sampling default 00:00 on	may contain ad ation of moisture uded in the package. time is provided, the date of sampling date wi	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will be assumed by the ckets without a time	WATER - EG005F Dissolved Metals by ICPAES	WATER - EP080 BTEXN	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P	WATER - NT-11 Total Nitrogen and Total Phosphorus	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-26 TRH/BTEXN/PAH/8 Metals
ES2423038-001	11-Jul-2024 00:00	MW1	✓		✓			✓
ES2423038-002	11-Jul-2024 00:00	MW2	✓		✓			1
ES2423038-003	11-Jul-2024 00:00	MW3	✓		✓			✓
ES2423038-004	11-Jul-2024 00:00	MW4	✓		✓			✓
ES2423038-005	11-Jul-2024 00:00	MW6	✓		✓			✓
ES2423038-006	11-Jul-2024 00:00	QC104	✓			✓		✓
ES2423038-007	11-Jul-2024 00:00	QC304	✓			1		✓
ES2423038-008	08-Jul-2024 00:00	QC405					✓	
ES2423038-009	08-Jul-2024 00:00	QC505		1				

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

BEC CHAPPLE

- *AU Certificate of Analysis - NATA (COA)	Email	bec.chapple@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bec.chapple@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bec.chapple@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bec.chapple@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	bec.chapple@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	bec.chapple@senversa.com.au
EMMA GUY		
- *AU Certificate of Analysis - NATA (COA)	Email	emma.guy@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	emma.guy@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	emma.guy@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	emma.guy@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	emma.guy@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	emma.guy@senversa.com.au
EMMA WALSH		
- *AU Certificate of Analysis - NATA (COA)	Email	Emma.Walsh@senversa.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Emma.Walsh@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Emma.Walsh@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	Emma.Walsh@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	Emma.Walsh@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	Emma.Walsh@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

: 12-Jul-2024 Issue Date

Page

: 3 of 3 : ES2423038 Amendment 0 Work Order Client : SENVERSA PTY LTD

CERTIFICATE OF ANALYSIS

Work Order : ES2423038

Client : SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ---C-O-C number : ----

Sampler : Rowan Faint

Site : ---

Quote number : EN/000

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 9

Laboratory : Environmental Division Sydney

Contact : Sandy Phan

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 12-Jul-2024 17:15

Date Analysis Commenced : 13-Jul-2024

Issue Date : 22-Jul-2024 16:26

ed by ALS. This document shall

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Edwardy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

Page : 3 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	11-Jul-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2423038-001	ES2423038-002	ES2423038-003	ES2423038-004	ES2423038-005
				Result	Result	Result	Result	Result
EG005(ED093)F: Dissolved Metals b	y ICP-AES							
Iron	7439-89-6	0.05	mg/L	87.2	2.30	7.01	1.90	<0.05
Manganese	7439-96-5	0.01	mg/L	4.84	3.28	6.79	4.00	<0.01
EG020F: Dissolved Metals by ICP-M	S							
Arsenic	7440-38-2	0.001	mg/L	0.007	0.008	0.003	0.007	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.003	<0.001	0.002	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.156	0.006	0.200	0.011	<0.001
Zinc	7440-66-6	0.005	mg/L	0.174	<0.005	0.243	<0.005	<0.005
EG035F: Dissolved Mercury by FIMS	S							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.19	0.26	0.28	0.28	<0.01
EK057G: Nitrite as N by Discrete Ar	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete A	nalyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.02	0.01	<0.01	1.64
EK059G: Nitrite plus Nitrate as N (N	IOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.02	0.01	<0.01	1.64
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.1	0.6	0.6	0.4	0.3
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	1.1	0.6	0.6	0.4	1.9
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.04	0.04	0.05
EP075(SIM)B: Polynuclear Aromatic	1							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0

Page : 4 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
(many to the large)		Samplii	ng date / time	11-Jul-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2423038-001	ES2423038-002	ES2423038-003	ES2423038-004	ES2423038-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont							
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of polycyclic aromatic hydrocarbon	ns	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydrocarl	bons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	μg/L	250	<50	<50	<50	<50
C15 - C28 Fraction		100	μg/L	170	<100	810	<100	<100
C29 - C36 Fraction		50	μg/L	<50	<50	<50	<50	<50
C10 - C36 Fraction (sum)		50	μg/L	420	<50	810	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	<20	<20
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20	<20

Page : 5 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1	MW2	MW3	MW4	MW6
		Sampli	ng date / time	11-Jul-2024 00:00				
Compound	CAS Number	LOR	Unit	ES2423038-001	ES2423038-002	ES2423038-003	ES2423038-004	ES2423038-005
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201							
>C10 - C16 Fraction		100	μg/L	260	<100	<100	<100	<100
>C16 - C34 Fraction		100	μg/L	260	<100	400	<100	<100
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	μg/L	520	<100	400	<100	<100
^ >C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L	260	<100	<100	<100	<100
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	μg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	μg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	μg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	<5
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	1.0	%	31.6	30.9	20.2	24.7	27.4
2-Chlorophenol-D4	93951-73-6	1.0	%	62.0	59.3	38.7	52.2	55.7
2.4.6-Tribromophenol	118-79-6	1.0	%	74.8	62.3	46.5	44.2	52.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	74.0	73.3	46.8	66.1	72.7
Anthracene-d10	1719-06-8	1.0	%	81.8	77.4	60.8	72.8	76.4
4-Terphenyl-d14	1718-51-0	1.0	%	85.2	84.8	58.0	78.3	82.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	96.6	98.2	104	100	99.9
Toluene-D8	2037-26-5	2	%	89.4	95.8	94.0	95.7	95.9
4-Bromofluorobenzene	460-00-4	2	%	109	113	115	113	116

Page : 6 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC104	QC304	QC405	QC505	
		Sampli	ng date / time	11-Jul-2024 00:00	11-Jul-2024 00:00	08-Jul-2024 00:00	08-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2423038-006	ES2423038-007	ES2423038-008	ES2423038-009	
				Result	Result	Result	Result	
EG005(ED093)F: Dissolved Metals b	_							
Iron	7439-89-6	0.05	mg/L	6.96	<0.05			
Manganese	7439-96-5	0.01	mg/L	6.80	<0.01			
EG020F: Dissolved Metals by ICP-M	S							
Arsenic	7440-38-2	0.001	mg/L	0.003	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001			
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Nickel	7440-02-0	0.001	mg/L	0.200	<0.001			
Zinc	7440-66-6	0.005	mg/L	0.239	<0.005			
EG035F: Dissolved Mercury by FIMS	3							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	3.34			
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.1			
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	0.6	3.4			
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.04	<0.01			
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0			
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0			
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0			
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0			
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0			
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0			

Page : 7 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC104	QC304	QC405	QC505	
,		Sampli	ng date / time	11-Jul-2024 00:00	11-Jul-2024 00:00	08-Jul-2024 00:00	08-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2423038-006	ES2423038-007	ES2423038-008	ES2423038-009	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued						
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0			
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0			
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0			
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0			
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0			
Sum of polycyclic aromatic hydrocarbon	ıs	0.5	μg/L	<0.5	<0.5			
Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5			
EP080/071: Total Petroleum Hydrocarb	oons							
C6 - C9 Fraction		20	μg/L	<20	<20	<20		
C10 - C14 Fraction		50	μg/L	<50	<50			
C15 - C28 Fraction		100	μg/L	800	<100			
C29 - C36 Fraction		50	μg/L	<50	<50			
C10 - C36 Fraction (sum)		50	μg/L	800	<50			
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20		
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	μg/L	<20	<20	<20		
>C10 - C16 Fraction		100	μg/L	<100	<100			
>C16 - C34 Fraction		100	μg/L	480	<100			
>C34 - C40 Fraction		100	μg/L	<100	<100			
>C10 - C40 Fraction (sum)		100	μg/L	480	<100			
>C10 - C16 Fraction minus Naphthalene (F2)		100	μg/L	<100	<100			

Page : 8 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC104	QC304	QC405	QC505	
(Maurix. WATER)		Sampli	ng date / time	11-Jul-2024 00:00	11-Jul-2024 00:00	08-Jul-2024 00:00	08-Jul-2024 00:00	
Compound	CAS Number	LOR	Unit	ES2423038-006	ES2423038-007	ES2423038-008	ES2423038-009	
				Result	Result	Result	Result	
EP080: BTEXN								
Benzene	71-43-2	1	μg/L	<1	<1	<1	14	
Toluene	108-88-3	2	μg/L	<2	<2	<2	15	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	14	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	<2	14	
ortho-Xylene	95-47-6	2	μg/L	<2	<2	<2	16	
^ Total Xylenes		2	μg/L	<2	<2	<2	30	
^ Sum of BTEX		1	μg/L	<1	<1	<1	73	
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	19	
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	1.0	%	33.2	30.2			
2-Chlorophenol-D4	93951-73-6	1.0	%	66.6	65.3			
2.4.6-Tribromophenol	118-79-6	1.0	%	77.0	66.1			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	73.7	70.9			
Anthracene-d10	1719-06-8	1.0	%	90.4	90.0			
4-Terphenyl-d14	1718-51-0	1.0	%	97.0	97.4			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	98.6	103	100	104	
Toluene-D8	2037-26-5	2	%	91.8	97.1	90.7	85.5	
4-Bromofluorobenzene	460-00-4	2	%	109	118	112	117	

Page : 9 of 9
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2423038** Page : 1 of 8

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : EMMA WALSH
 Telephone
 : +61-2-8784 8555

 Project
 : S20102 Wetherill Park WME
 Date Samples Received
 : 12-Jul-2024

 Site
 : --- Issue Date
 : 22-Jul-2024

Sampler : Rowan Faint No. of samples received : 9

Order number : ---- No. of samples analysed : 9

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, where applicable to the methodology, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8 Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

ALS

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005(ED093)F: Dissolved Metals by ICP-AES	ES2423038001	MW1	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	EN2406968001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

WOULK, WATER						
Quality Control Sample Type		Co	unt	Rate	e (%)	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	10	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **×** = Holding time breach ; ✓ = Within holding time.

madistri in the little							,	g
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)F: Dissolved Metals by ICI	P-AES							
Clear Plastic Bottle - Nitric Acid; Filtered	(EG005F)							
MW1,	MW2,	11-Jul-2024				17-Jul-2024	07-Jan-2025	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								

Page : 3 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)								
MW1,	MW2,	11-Jul-2024				17-Jul-2024	07-Jan-2025	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
MW1,	MW2,	11-Jul-2024				18-Jul-2024	08-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1,	MW2,	11-Jul-2024				18-Jul-2024	08-Aug-2024	✓
MW3,	MW4,							
MW6								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)							40 1 1 0004	
MW1,	MW2,	11-Jul-2024				13-Jul-2024	13-Jul-2024	✓
MW3,	MW4,							
MW6								
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	ılyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
MW1,	MW2,	11-Jul-2024				18-Jul-2024	08-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)				00.4	_			
MW1,	MW2,	11-Jul-2024	17-Jul-2024	08-Aug-2024	✓	18-Jul-2024	08-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G)				00.4 005.	_		00.4 005:	
MW1,	MW2,	11-Jul-2024	17-Jul-2024	08-Aug-2024	✓	18-Jul-2024	08-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								

Page : 4 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ev	traction / Preparation	Lvaldation	Holding time	Analysis	IT Holding time
Container / Client Sample ID(s)		Sample Date			Francisco	5		Fratrotion
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))				40 1-1-0004			04 4 0004	
MW1,	MW2,	11-Jul-2024	15-Jul-2024	18-Jul-2024	✓	17-Jul-2024	24-Aug-2024	✓
MW3								
Amber Glass Bottle - Unpreserved (EP075(SIM))		44 1 1 0004	45 1 1 0004	40 1.1 0004		40 1 1 0004	04 4 0004	
MW4,	MW6,	11-Jul-2024	15-Jul-2024	18-Jul-2024	✓	18-Jul-2024	24-Aug-2024	✓
QC104,	QC304							
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
MW1,	MW2,	11-Jul-2024	15-Jul-2024	18-Jul-2024	✓	18-Jul-2024	24-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
Amber VOC Vial - Sulfuric Acid (EP080)								
QC405		08-Jul-2024	15-Jul-2024	22-Jul-2024	✓	15-Jul-2024	22-Jul-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW1,	MW2,	11-Jul-2024	15-Jul-2024	25-Jul-2024	✓	15-Jul-2024	25-Jul-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MW1,	MW2,	11-Jul-2024	15-Jul-2024	18-Jul-2024	✓	18-Jul-2024	24-Aug-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
Amber VOC Vial - Sulfuric Acid (EP080)								
QC405		08-Jul-2024	15-Jul-2024	22-Jul-2024	✓	15-Jul-2024	22-Jul-2024	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW1,	MW2,	11-Jul-2024	15-Jul-2024	25-Jul-2024	✓	15-Jul-2024	25-Jul-2024	✓
MW3,	MW4,							
MW6,	QC104,							
QC304								
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)								
								T. Control of the Con
QC405,	QC505	08-Jul-2024	15-Jul-2024	22-Jul-2024	✓	15-Jul-2024	22-Jul-2024	✓
QC405, Amber VOC Vial - Sulfuric Acid (EP080)	QC505	08-Jul-2024	15-Jul-2024	22-Jul-2024	✓	15-Jul-2024	22-Jul-2024	✓
· · · · · · · · · · · · · · · · · · ·	QC505 MW2,	08-Jul-2024 11-Jul-2024	15-Jul-2024 15-Jul-2024	22-Jul-2024 25-Jul-2024	<i>J</i>	15-Jul-2024 15-Jul-2024	22-Jul-2024 25-Jul-2024	✓ ✓
Amber VOC Vial - Sulfuric Acid (EP080)								
Amber VOC Vial - Sulfuric Acid (EP080) MW1,	MW2,							

Page : 5 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Oddiers.

Matrix: WATER				Evaluatio	n: × = Quality Co	not within specification; ✓ = Quality Control frequency within specification.	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	10	0.00	10.00	3¢	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	40	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-AES	EG005F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							

Page : 6 of 8 Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Analytical Methods Method QC Evaluation Regular Actual Expected Matrix Spikes (MS) - Continued Ammonia as N by Discrete analyser 20 5.00 NEPM 2013 B3 & ALS QC Standard EK055G 1 5.00 1 Dissolved Mercury by FIMS 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EG035F 1 7 Dissolved Metals by ICP-AES 1 14.29 5.00 NEPM 2013 B3 & ALS QC Standard EG005F ✓ Dissolved Metals by ICP-MS - Suite A 1 20 5.00 NEPM 2013 B3 & ALS QC Standard EG020A-F 5.00 1 Nitrite and Nitrate as N (NOx) by Discrete Analyser EK059G 2 32 6.25 5.00 1 NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser 1 15 NEPM 2013 B3 & ALS QC Standard 6.67 5.00 EK057G ✓ PAH/Phenols (GC/MS - SIM) 0 10 0.00 5.00 NEPM 2013 B3 & ALS QC Standard EP075(SIM) × Total Kjeldahl Nitrogen as N By Discrete Analyser 2 40 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EK061G 1 Total Phosphorus as P By Discrete Analyser 20 1 5.00 5.00 1 NEPM 2013 B3 & ALS QC Standard EK067G TRH - Semivolatile Fraction 0 10 0.00 NEPM 2013 B3 & ALS QC Standard EP071 5.00 × TRH Volatiles/BTEX EP080 1 16 6.25 5.00 NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-AES	EG005F	WATER	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)

Page : 8 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode
			and quantification is by comparison against an established 5 point calibration curve. This method is compliant
			with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary
			GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a
			sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This
			method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Preparation Methods TKN/TP Digestion	Method EK061/EK067	<i>Matrix</i> WATER	Method Descriptions In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
			In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3) In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated

QUALITY CONTROL REPORT

Work Order : **ES2423038** Page : 1 of 8

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Sandy Phan

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : +61-2-8784 8555

Project : \$20102 Wetherill Park WME Date Samples Received : 12-Jul-2024

Order number Date Analysis Commenced : 13-Jul-2024

C-O-C number : ---- Issue Date

Sampler : Rowan Faint

Site : ---Quote number : EN/000

No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

· 22-Jul-2024

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This Quality Control Report contains the following information:

: 9

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwardy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 8 · ES2423038 Work Order

· SENVERSA PTY LTD Client **Project** · S20102 Wetherill Park WME

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)F: Dis	ssolved Metals by ICP	-AES (QC Lot: 5927824)							
ES2423038-002	MW2	EG005F: Manganese	7439-96-5	0.01	mg/L	3.28	3.30	0.7	0% - 20%
		EG005F: Iron	7439-89-6	0.05	mg/L	2.30	2.27	1.6	0% - 20%
ES2423171-004	Anonymous	EG005F: Manganese	7439-96-5	0.01	mg/L	0.29	0.31	5.7	0% - 20%
		EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (Q	C Lot: 5927822)							
ES2422571-003	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES2423171-007	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.006	0.006	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.010	0.010	0.0	0% - 50%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.006	0.007	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.352	0.348	1.0	0% - 20%

Page : 3 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER						Laboratory E	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035F: Dissolved I	Mercury by FIMS (QC Lot: 5	927821) - continued							
ES2422571-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2423038-006	QC104	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK055G: Ammonia a	as N by Discrete Analyser (QC Lot: 5931487)							
EN2406968-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.68	0.65	3.2	0% - 20%
ES2423149-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.03	0.0	No Limit
EK057G: Nitrite as I	N by Discrete Analyser (QC	Lot: 5922064)							
ES2422894-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2423027-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 5931486)							
EN2406976-006	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	19.2	19.1	0.5	0% - 20%
EN2406968-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	4.30	4.20	2.3	0% - 20%
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 5931488)							
ES2423149-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.73	0.73	0.0	0% - 20%
ME2401138-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.34	0.36	5.2	0% - 20%
EK061G: Total Kjeld	ahl Nitrogen By Discrete An	alyser (QC Lot: 5931483)							
EN2406976-007	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (0.5)*	mg/L	0.8	0.9	12.1	No Limit
EN2406950-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (2.0)*	mg/L	101	110	8.2	0% - 20%
EK061G: Total Kield	ahl Nitrogen By Discrete An								
ES2423038-005	MW6	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.3	0.0	No Limit
ES2423536-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (1.0)*	mg/L	50.4	49.4	1.9	0% - 20%
EK067G: Total Phos	phorus as P by Discrete An	alvser (QC Lot: 5931482)							
EN2406950-001	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.20)*	mg/L	0.81	1.13	32.5	No Limit
ES2423038-005	MW6	EK067G: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 5924176)							
ES2423038-001	MW1	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2423038-008	QC405	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 5924176)							
ES2423038-001	MW1	EP080: C6 - C10 Fraction	C6 C10	20	μg/L	<20	<20	0.0	No Limit
ES2423038-008	QC405	EP080: C6 - C10 Fraction	 C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5924176)								
ES2423038-001	MW1	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit

Page : 4 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EP080: BTEXN (QC	Lot: 5924176) - continued											
ES2423038-001	MW1	EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit			
ES2423038-008	QC405	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit			
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit			
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit			
			106-42-3									
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit			
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit			

Page : 5 of 8 Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 592									
EG005F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	109	82.0	114	
EG005F: Manganese	7439-96-5	0.01	mg/L	<0.01	0.1 mg/L	103	81.0	113	
EG020F: Dissolved Metals by ICP-MS (QCLot: 5927822)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.3	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.4	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.1	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	96.9	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.7	83.0	111	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.3	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.8	81.0	117	
EG035F: Dissolved Mercury by FIMS (QCLot: 5927821)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	93.6	83.0	105	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 593°	1487)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	95.4	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 592206	4)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	100	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	ser (QCLot: 59	31486)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	108	91.0	113	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	ser (QCLot: 59	31488)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	107	91.0	113	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(QC	Lot: 5931483)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	88.7	69.0	123	
				<0.1	1 mg/L	116	70.0	123	
				<0.1	5 mg/L	112	70.0	123	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(QC	Lot: 5931484)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	87.1	69.0	123	
				<0.1	1 mg/L	112	70.0	123	
				<0.1	5 mg/L	108	70.0	123	
EK067G: Total Phosphorus as P by Discrete Analyser (QCI	Lot: 5931482)								

Page : 6 of 8
Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS	S Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 5	5931482) -	- continued						
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	104	71.3	126
				<0.01	0.442 mg/L	98.2	71.3	126
				<0.01	1 mg/L	101	70.0	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 592	3133)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	68.8	50.0	94.0
EP075(SIM): Acenaphthylene 2	08-96-8	1	μg/L	<1.0	5 μg/L	71.8	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	71.5	62.2	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	68.4	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	75.7	62.6	116
EP075(SIM): Anthracene 1	20-12-7	1	μg/L	<1.0	5 μg/L	78.6	64.3	116
EP075(SIM): Fluoranthene 2	06-44-0	1	μg/L	<1.0	5 μg/L	84.5	63.6	118
EP075(SIM): Pyrene 1	29-00-0	1	μg/L	<1.0	5 μg/L	87.7	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	80.9	64.1	117
EP075(SIM): Chrysene 2	18-01-9	1	μg/L	<1.0	5 μg/L	92.3	62.5	116
. ,	05-99-2 05-82-3	1	μg/L	<1.0	5 μg/L	86.5	61.7	119
EP075(SIM): Benzo(k)fluoranthene 2	07-08-9	1	μg/L	<1.0	5 μg/L	85.9	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	85.5	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	93-39-5	1	μg/L	<1.0	5 μg/L	73.2	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	74.8	61.2	117
EP075(SIM): Benzo(g.h.i)perylene 1	91-24-2	1	μg/L	<1.0	5 μg/L	77.8	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5923134)								
EP071: C10 - C14 Fraction		50	μg/L	<50	400 μg/L	85.8	53.7	97.0
EP071: C15 - C28 Fraction		100	μg/L	<100	600 μg/L	83.2	63.3	107
EP071: C29 - C36 Fraction		50	μg/L	<50	400 μg/L	97.1	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5924176)								
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	88.1	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fracti	ons (QCL	.ot: 5923134)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	500 μg/L	73.3	53.9	95.5
EP071: >C16 - C34 Fraction		100	μg/L	<100	700 μg/L	82.1	57.8	110
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 μg/L	105	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fracti	ons (QCL	.ot: 5924176)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	82.9	75.0	127
EP080: BTEXN (QCLot: 5924176)								

Page : 7 of 8 Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 5924176) - continued									
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	84.9	68.3	119	
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	95.7	73.5	120	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	89.7	73.8	122	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	97.5	73.0	122	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	96.1	76.4	123	
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	103	75.5	124	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report	•	
				Spike	SpikeRecovery(%)	Acceptable i	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)F: D	issolved Metals by ICP-AES (QCLot: 5927824)						
ES2423038-001	MW1	EG005F: Manganese	7439-96-5	1 mg/L	# Not Determined	70.0	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5927822)						
ES2422571-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	96.6	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.8	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	95.1	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	96.7	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	92.5	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	97.7	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	99.2	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 5927821)						
ES2422571-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	84.1	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 5931487)						
EN2406968-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	113	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 5922064)						
ES2422894-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	101	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot:	5931486)					
EN2406968-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not Determined	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot:	5931488)					

Page : 8 of 8 Work Order : ES2423038

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

Sub-Matrix: WATER				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 593	1488) - continued					
ME2401138-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	125	70.0	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5931483)						
EN2406950-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		100 mg/L	99.8	70.0	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5931484)						
ES2423536-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		50 mg/L	104	70.0	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 5931482)						
EN2406950-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	97.0	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5924176)						
ES2423038-001	MW1	EP080: C6 - C9 Fraction		325 μg/L	108	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 5924176)					
ES2423038-001	MW1	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	100	70.0	130
EP080: BTEXN (Q	CLot: 5924176)						
ES2423038-001	MW1	EP080: Benzene	71-43-2	25 μg/L	76.5	70.0	130
		EP080: Toluene	108-88-3	25 μg/L	79.4	70.0	130
		EP080: Ethylbenzene	100-41-4	25 μg/L	81.6	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	78.9	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	92.7	70.0	130
		EP080: Naphthalene	91-20-3	25 μg/L	97.4	70.0	130

, ev rsa

Chain of Custody Documentation

	Pty Ltd			Laboratory:	ALS NSW								/	\nalysis	Require	ed		
WWW.SORVE ABN 89 13				Address: Contact: Phone:	Sample Receipt													<u>Comments</u> : e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.
Job Numb	er;	S2	20102	Purchase Order:			1	TALS	TALS	Ş								Environmental Divisi
Project Na:	me:	Wetherill	Park WME	Quote No:	EN/103/21			8 ME	8 ME	NS A				· ·			i	Sydney Work Order Reference ES230401
Sampled B	у:	Bec (Chapple	Turn Around Time:	Standard 7)ays	9	PAH	PAH	ANIC	}			NN NN				Work Order Reference
Project Ma	nager:		a Walsh	Page:	1	of 1 .	Ĭ.	JEX/	ĪÄ	SNC	a.) _@		AND MN)	İ			E3230401
Email Repo	ort To:		senversa.com.au. Psenversa.com.au	Phone/Mobile:	0408038593, 040	4011544	M-18 (TRH/BTEXN)	N-26 (TRH/BTEX/PAH/8 METALS)	W:27 (TRH/BTEX/PAH/8 METALS/ PHENOLS)	NT-14 (CATIONS, ANIONS AND NUTRIENTS)	NT-11 (TN, TP	EA015H (TDS)	EA025H (TSS)	뿐				2 111 2 11 7 75.2. 11 17
_		Sample Information	on		Container Infor	mation	8	၂		4 E] E .	<u> 후</u>	1251	<u>ĝ</u>			ا ا	
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	1 ₹	M-2	% E	Εğ	🛓	I %	EA0	EG005F (i	НОГЪ	
- 1	QC401	w	8/02/2023	АМ	VOA	1	х		 -	 	<u> </u>							
2	QC501	w	8/02/2023	AM	VOA	1	х											
3	QC301	w	8/02/2023	AM	VS x2, N, UA, VSA	5		х			х		-	х				Telephone: + 61-2-6784 6555
<u>'</u>	MW1	W	8/02/2023	AM	P; VS x2. N. UA. VSA	6			х	х				x i				1
₹	MW2	w	8/02/2023	АМ	P, VS x2, N, UA, VSA	l 6			х	х				х				
6	MW3	W	8/02/2023	AM	P, VS x2, N, UA, VSA	6			X	х				х	*.			
7	MW4	w	8/02/2023	AM	P. VS x2, N, UA, VSA	6	-		X.	х				х				
8	MW6	w	8/02/2023	АМ	P. VS x2, N, UA, VSA	6			х	Χ̈	_			х				
9	QC101	W	8/02/2023	АМ	VS x2, N. UA. VSA	5.		х			х			x				
X_	QC201	w	8/02/2023	AM	VS x2, N, UA, VSA	_ 5				Envir	olab Se							Please forward to Envirolab
							FI	LOSTON	ÀB		12 Asi	ley St						,
						,		_	, ,	natswo	od NSI n2) 991	0 6200						
								h No	- 2	11 15	-9							
	Subcon	Corward Lab	/ Split WO			<u>'</u>				\\ \(\)	, ,	15	,]					· · · · · · · · · · · · · · · · · · ·
		l to	(A)	1211	WRUAB		D	ate Re	ceived	Y.	10,4	10	٧	,				Event I
	Lab / A	7 7					T	me Re	ceive	<u> ,(v</u>	00							
	Organis	ed By / Date:			-		R	eceive	g BA	UST	,							4. 47 W
	Relinqu	ished By / Dat	31					empro	12	epack		7						
Γotal	- Contot	e / Courier:				47 🕳	-	ecutit			ep/No	ie)						
Sampler: l a	ttest that proper field samp	ing procedures in a	ccordance with Se	nversa standard proce	dures and/or project	Sampler Name:		Bec C	happle		Signatu	re:	AL,	版) _		Date:	8/02/2023
Relinguishe		d By PO / Inte	1.65		Method of Shipment (if app	lianhlair			Receive			2	<u> </u>	<u>**</u>	/			
Vame/Signa		· Bec Chapple	- Persey/	Date: 8/2/23	Carrier / Reference #:	mca <u>ble</u> j.				ignature		7-79		1			_	Date: SIUI3
Of:				Time: 12:00 PM	Date/Time:	-			Of:	ng natur C	•	/ π Δ	1	17				Time: 12-29_
lame/Signa	ure:			Date:	Carrier / Reference #:				Name/S	ignature	<u>Ci</u>	1/-1/	Fix			1_		Date: 09 (02/73
Of:				Time:	Date/Time:		<u>. </u>		Of:		1 /	<u> 27</u>	0					Time: 1,6(1(1)
lame/Signal Of:	ure:			Date:	Carrier / Reference #:			_	Name/S	ignature	:							Date:
			_	Time: eserved Plastic; ORC = Niti	Date/Time:	4			Of:									Time:

Simon Song

From:

Emma Walsh < Emma. Walsh@senversa.com.au>

Sent:

Wednesday, 15 February 2023 9:55 AM

To:

Simon Song

Cc:

Bec Chapple

Subject:

RE: Sample Receipt for 316159 S20102, Wetherill Park WME

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Simon,

Sorry for the delay in getting back to you - can you pleased analyse sample QC201 for the following:

- TRH/BTEXN/PAH/8 metals (As, Cd, Cr, Cu, Hg, Ni and Zn)
- Total N, total P
- Additional metals iron and manganese

APPENDED THE PROPERTY OF A STATE OF THE STAT

10.00

Thanks.

Kind regards,

senversa

Emma Walsh

Senior Associate Environmental Scientist

M: +61 404 011 544 www.senversa.com.au

Level 24, 1 Market St, Djubuguli, Eora Country Sydney, NSW, 2000, Australia etnerill Pa. 4N:

tructons, c. Make o. . .

Octob for the follow

From: Simon Song <SSong@envirolab.com.au>

Sent: Friday, 10 February 2023 1:16 PM

To: Bec Chapple <bec.chapple@senversa.com.au>; Emma Walsh <Emma.Walsh@senversa.com.au>

Subject: Sample Receipt for 316159 S20102, Wetherill Park WME

Please refer to attached for:

a copy of the COC/paperwork received from you

a copy of our Sample Receipt Advice (SRA)

Please open and read the SRA as it contains important information.

Please let the lab know immediately if there are any issues.

echemi Pa AV

Results will be available by 6.30pm on the date indicated.

PLEASE NOTE COMBO PRICES WILL ONLY APPLY IF COMBOS ARE SELECTED ON COC. Company of the property of the combos are selected on coc.

We have a new reporting format and would welcome your feedback. Sydney@envirolab.com.au

Please note that subcontracted testing or non routine testing may take significantly longer than just the standard 5 day TAT, contact the lab to get an approximate due date.

Enquiries should be made directly to: customerservice@envirolab.com.au

DOLDLIGHT IN FOR GA

Regards

Envirolab Services
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

The Property State of the

5. . .

Mari Par A

in Emiles in the in-

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Senversa Pty Ltd
Attention	Bec Chapple, Emma Walsh

Sample Login Details	
Your reference	S20102, Wetherill Park WME
Envirolab Reference	316159
Date Sample Received	09/02/2023
Date Instructions Received	15/02/2023
Date Results Expected to be Reported	22/02/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	3
Cooling Method	Ice
Sampling Date Provided	YES

Comments
last day of holding time for organics 15/2

Please direct any queries to:

Aileen Hie	Jacinta Hurst	
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	HM in water - dissolved	Total Nitrogen in water	Metals in Waters -Total
QC201	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 316159

Client Details	
Client	Senversa Pty Ltd
Attention	Bec Chapple, Emma Walsh
Address	6/15 William St, Melbourne, VIC, 3000

Sample Details	
Your Reference	S20102, Wetherill Park WME
Number of Samples	1 Water
Date samples received	09/02/2023
Date completed instructions received	15/02/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	22/02/2023	
Date of Issue	22/02/2023	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Josh Williams, Organics Supervisor Kyle Gavrily, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date extracted	-	21/02/2023
Date analysed	-	21/02/2023
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	113
Surrogate toluene-d8	%	103
Surrogate 4-BFB	%	104

svTRH (C10-C40) in Water		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date extracted	-	16/02/2023
Date analysed	-	16/02/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	140
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	140
TRH >C ₁₀ - C ₁₆	μg/L	130
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	130
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	130
Surrogate o-Terphenyl	%	67

PAHs in Water		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date extracted	-	16/02/2023
Date analysed	-	20/02/2023
Naphthalene	μg/L	<2
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	74

Envirolab Reference: 316159

Revision No: R00

HM in water - dissolved		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date prepared	-	17/02/2023
Date analysed	-	20/02/2023
Arsenic-Dissolved	μg/L	4
Cadmium-Dissolved	μg/L	0.1
Chromium-Dissolved	μg/L	2
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	180
Zinc-Dissolved	μg/L	230
Iron-Dissolved	μg/L	5,700
Manganese-Dissolved	μg/L	5,800

Miscellaneous Inorganics		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date prepared	-	16/02/2023
Date analysed	-	16/02/2023
Total Nitrogen in water	mg/L	0.5

Metals in Waters - Total		
Our Reference		316159-1
Your Reference	UNITS	QC201
Date Sampled		8/02/2023
Type of sample		Water
Date prepared	-	20/02/2023
Date analysed	-	20/02/2023
Phosphorus - Total	mg/L	0.8

Method ID	Methodology Summary
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 316159

Revision No: R00

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023		
Date analysed	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	95		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	95		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	93		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	110	[NT]		[NT]	[NT]	97		
Surrogate toluene-d8	%		Org-023	104	[NT]		[NT]	[NT]	100		
Surrogate 4-BFB	%		Org-023	103	[NT]		[NT]	[NT]	101		

Envirolab Reference: 316159

Revision No: R00

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			16/02/2023	[NT]		[NT]	[NT]	16/02/2023	
Date analysed	-			16/02/2023	[NT]		[NT]	[NT]	16/02/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	120	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	120	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	75	[NT]		[NT]	[NT]	82	

QUAL	ITY CONTRO	L: PAHs ir	ı Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			16/02/2023	[NT]		[NT]	[NT]	16/02/2023		
Date analysed	-			20/02/2023	[NT]		[NT]	[NT]	20/02/2023		
Naphthalene	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	72		
Acenaphthylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	73		
Fluorene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	74		
Phenanthrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	82		
Anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	80		
Pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	85		
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Chrysene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	69		
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	86		
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	77	[NT]		[NT]	[NT]	77		

QUALITY CONTROL: HM in water - dissolved							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			17/02/2023	[NT]		[NT]	[NT]	17/02/2023		
Date analysed	-			20/02/2023	[NT]		[NT]	[NT]	20/02/2023		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95		
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	97		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94		
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	93		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	94		

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			16/02/2023	[NT]	[NT]		[NT]	16/02/2023	
Date analysed	-			16/02/2023	[NT]	[NT]		[NT]	16/02/2023	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	[NT]	[NT]		[NT]	111	

QUALITY CONTROL: Metals in Waters - Total						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/02/2023	[NT]		[NT]	[NT]	20/02/2023	
Date analysed	-			20/02/2023	[NT]		[NT]	[NT]	20/02/2023	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	111	

Envirolab Reference: 316159

Page | **14 of 17** Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 316159

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Total metals: no unfiltered, preserved sample was received, therefore analysis was conducted from the unpreserved amber sample bottle

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 316159

Revision No: R00

Page | 17 of 17

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>316159</u>
Client ID	Senversa Pty Ltd
Project Reference	S20102, Wetherill Park WME
Date Issued	22/02/2023

QC DATA

All laboratory QC data was within the Envirolab Group's specifications.

HOLDING TIME COMPLIANCE EVALUATION

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant except:

Holding Time Exceedances					
Analysis	Sample No	Date Sampled	Date Extracted	Date Analysed	Accepted
svTRH (C10-C40) in Water					
	316159-1	8/02/2023	16/02/2023	16/02/2023	Х
PAHs in Water					
	316159-1	8/02/2023	16/02/2023	20/02/2023	X

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	✓
Laboratory Control Sample(s) were analysed with the samples received	✓
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency (Not Applicable for Air samples)	✓

Refer to Certificate of Analysis for all Quality Control data.

senversa

Chain of Custody Documentation

Senversa Pty Ltd www.senversa.com.au			Laboratory:	mgt/Eurofins VIC	rofins VIC		Analysis Required											
ABN 89 132 231				Address: Contact: Phone:	Sample Receipt			neg										Comments: e.g. Highly contaminated sam hazardous materials present; trace LORs
Job Number:		SZ	20102	Purchase Order:			tals	Nitro										
Project Name: Redirect Sampled By: HY Project Manager: Bec Chapple		Quote No:			Ş,	Total Phosphorous and Total Nitrogen												
				Turn Around Time: 24 Hours			Heav	Hea	<u>lo</u>									
		Bec			1		of 1		and In									
		Page: 1 of 1 Phone/Mobile: 0408 038 593		TRH/BTEX/PAH/8 Heavy metals	osbhr	88 88												
		Sample Informati			Container Info		<u> </u>	<u>₹</u>	Manganese		1	1 1						
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	崖	흅									НОГР	
	QC202	Water	14/08/2023				Х	Х	X									
																\neg	\dashv	
															_	\neg	\neg	
otal																		
ampler: I attest pecifications w	that proper field samp ere used during the col	ling procedures in a lection of these sam	ccordance with Sen	versa standard proced	lures and/or project	Sampler Name:		layley Y	'ellowlees		Signatu	re:				Da	ite:	14/08/20:
Relinquished By	:				Method of Shipment (if app	ilcable):			Receive	d by:	-							
			Date: 25/8/23	Carrier / Reference #:			Name/Signature: Phenounce					Date: 15/8						
			Time:	Date/Time:			Of: Comm				Т	Ime: {L: {L						
			Date: Time:	Carrier / Reference #:			Name/Signature: Date:											
700			Date:	Date/Time:			Of:				$\overline{}$	îme;						
a.			Time:	Carrier / Reference #: Date/Time:								Pate:						
Water	Container Codes: P = U	Inpreserved Plastic; N =	Nitric Acid (HNO ₃) Pre	served Plastic: ORC = Nit	ric Preserved ORC: SH = Sodium	Hydroxide (NaOH)/Ca	admium (Cd) Pres	anrad: S -	Sodium	1 Hydroxide	Preserved	l Plastic;	STH = Sc	dium thios	ulfate pre	served	îme: plastic;
V - VL	JA VIXII FIVOOCIIIONG ACIO (M	un Preserved: VS = VC	JA VIAI SUIDHURG Presei	vod: VSA = Subhburic Pro	served Amber Glass; H = HCl Pro = Sterile Bottle; UA = Unpreserved	control Pitantin, 110 -	11010											

7.1 Report # 1020195

S20102 COC

www.eurofins.com.au

EnviroSales@eurofins.com

NZBN: 9429046024954

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 NATA# 1261

Geelong 19/8 Lewalan Street Grovedale VIC 3216 NATA# 1261 Site# 25403

179 Magowar Road Girraween NSW 2145 NATA# 1261 Site# 18217

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane Newcastle 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794

Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290

Eurofins Environment Testing NZ Ltd

Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 IANZ# 1402

Sample Receipt Advice

Company name:

Senversa Pty Ltd NSW

Contact name: Project name: Project ID:

Bec Chapple REDIRECT S20102 1 Day

Turnaround time: Date/Time received

Aug 25, 2023 12:11 PM

Eurofins reference 1020195

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

X Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Hannah Mawbey on phone: or by email: Hannah Mawbey@eurofins.com

Results will be delivered electronically via email to Bec Chapple - bec.chapple@senversa.com.au.

Note: A copy of these results will also be delivered to the general Senversa Pty Ltd NSW email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Time

Water

Site# 1254

Melbourne 6 Monterey Road Dandenong South VIC 3175

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145

NATA# 1261

Site# 18217

S23-Au0064866

Χ

1

Χ

Χ Χ Χ

1

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Priority:

Contact Name:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa, Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Aug 25, 2023 12:11 PM

Aug 28, 2023

Bec Chapple

1 Dav

Company Name:

Address:

QC202

Test Counts

Senversa Pty Ltd NSW

Level 24, 1 Market Street SYDNEY

NSW 2000

Project Name: Project ID:

REDIRECT S20102

Aug 14, 2023

Order No.:

Phone:

Report #:

1020195 02 9994 8016

03 9606 0074 Fax:

Eurofins Analytical Services Manager: Hannah Mawbey

		Sa	mple Detail			ron	Manganese	Phosphate total (as P)	Total Nitrogen (as N)	Eurofins Suite B7
Melb	Melbourne Laboratory - NATA # 1261 Site # 1254								Х	Х
Sydney Laboratory - NATA # 1261 Site # 18217							Х	Х		Х
External Laboratory										
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID					

Senversa Pty Ltd NSW Level 24, 1 Market Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Bec Chapple

Report1020195-WProject nameREDIRECTProject ID\$20102Received DateAug 25, 2023

Client Sample ID			QC202
Sample Matrix			Water
Eurofins Sample No.			S23- Au0064866
Date Sampled			Aug 14, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons		0	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	95
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

Report Number: 1020195-W

Client Sample ID Sample Matrix			QC202 Water S23-
Eurofins Sample No.			Au0064866
Date Sampled			Aug 14, 2023
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	71
p-Terphenyl-d14 (surr.)	11	%	130
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02
Phosphate total (as P)	0.01	mg/L	0.03
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.5
Total Nitrogen (as N)*	0.2	mg/L	0.5
Heavy Metals			
Arsenic	0.001	mg/L	0.002
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.002
Copper	0.001	mg/L	0.002
Iron	0.05	mg/L	2.3
Lead	0.001	mg/L	0.002
Manganese	0.005	mg/L	5.9
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.18
Zinc	0.005	mg/L	0.086

Report Number: 1020195-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 25, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 25, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 25, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 25, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 25, 2023	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Aug 28, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Aug 31, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	Aug 31, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	Aug 31, 2023	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Aug 31, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Phosphate total (as P)	Sydney	Aug 25, 2023	28 Days
- Method: E052 Total Phosphate (as P)			
Heavy Metals	Sydney	Aug 28, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Report Number: 1020195-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Aug 25, 2023 12:11 PM

Aug 28, 2023

Company Name:

Address:

Senversa Pty Ltd NSW Level 24, 1 Market Street

SYDNEY

NSW 2000

Project Name: Project ID:

REDIRECT S20102

Order No.:

Report #: 1020195 02 9994 8016

Phone: 03 9606 0074 Fax:

Priority: 1 Dav **Contact Name:** Bec Chapple

Eurofins Analytical Services Manager: Hannah Mawbey

		Sa	mple Detail			Iron	Manganese	Phosphate total (as P)	Total Nitrogen (as N)	Eurofins Suite B7
Melb	Melbourne Laboratory - NATA # 1261 Site # 1254								Х	Х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х	Х		Х
Exte	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	QC202	Aug 14, 2023		Water	S23-Au0064866	Χ	Х	Х	Х	Х
Test	Counts					1	1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.001	Pass	
o-Xylene	mg/L	< 0.002	0.002	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.000	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ne				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	IIIg/L	V 0.01	0.01	rass	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene		< 0.001	0.001	Pass	
	mg/L			Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001		
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		1			
Heavy Metals	1			<u> </u>	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.005	0.005	Pass	l .

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons							
TRH C6-C9			%	78	70-130	Pass	
TRH C10-C14			%	91	70-130	Pass	
TRH C6-C10			%	78	70-130	Pass	
TRH >C10-C16			%	89	70-130	Pass	
LCS - % Recovery					 		
ВТЕХ							
Benzene			%	95	70-130	Pass	
Toluene			%	86	70-130	Pass	
Ethylbenzene			%	85	70-130	Pass	
m&p-Xylenes			%	85	70-130	Pass	
o-Xylene			%	82	70-130	Pass	
Xylenes - Total*			%	84	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions					
Naphthalene			%	95	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	<u> </u>						
Acenaphthene			%	99	70-130	Pass	
Acenaphthylene			%	98	70-130	Pass	
Anthracene			%	113	70-130	Pass	
Benz(a)anthracene			%	91	70-130	Pass	
Benzo(a)pyrene			%	111	70-130	Pass	
Benzo(b&j)fluoranthene			%	109	70-130	Pass	
Benzo(g.h.i)perylene			%	118	70-130	Pass	
Benzo(k)fluoranthene			%	128	70-130	Pass	
Chrysene			%	125	70-130	Pass	
Dibenz(a.h)anthracene			%	84	70-130	Pass	
Fluoranthene			%	114	70-130	Pass	
Fluorene			%	111	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	100	70-130	Pass	
Naphthalene			%	83	70-130	Pass	
Phenanthrene			%	95	70-130	Pass	
Pyrene			%	113	70-130	Pass	
LCS - % Recovery			70	1.0	70 100	1 400	
Heavy Metals							
Arsenic			%	101	80-120	Pass	
Cadmium			%	101	80-120	Pass	
Chromium			%	102	80-120	Pass	
Copper			%	101	80-120	Pass	
Iron			<u> </u>	95	80-120	Pass	
Lead			<u> </u>	106	80-120	Pass	
Manganese			%	100	80-120	Pass	
Mercury			%	100	80-120	Pass	
Nickel			%	109	80-120	Pass	
Zinc			%	101	80-120	Pass	
		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery				T -			
Total Recoverable Hydrocarbons	12			Result 1	<u> </u>	_	
TRH C10-C14	S23-Au0058328	NCP	%	73	70-130	Pass	
TRH >C10-C16	S23-Au0058328	NCP	%	72	70-130	Pass	
Spike - % Recovery					 T		
Heavy Metals	1			Result 1			
Arsenic	S23-Au0054217	NCP	%	117	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	L23-Au0051993	NCP	%	99			75-125	Pass	
Chromium	L23-Au0051993	NCP	%	88			75-125	Pass	
Copper	S23-Au0054217	NCP	%	85			75-125	Pass	
Iron	L23-Au0051993	NCP	%	82			75-125	Pass	
Lead	L23-Au0051993	NCP	%	81			75-125	Pass	
Manganese	L23-Au0051993	NCP	%	91			75-125	Pass	
Mercury	S23-Au0054217	NCP	%	97			75-125	Pass	
Nickel	S23-Au0054217	NCP	%	89			75-125	Pass	
Zinc	S23-Au0054217	NCP	%	85			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				ī	1				
Total Recoverable Hydrocarbons	1	, ,		Result 1	Result 2	RPD			
TRH C6-C9	S23-Au0058331	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S23-Au0058327	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S23-Au0058327	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S23-Au0058327	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	S23-Au0058331	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S23-Au0058327	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S23-Au0058327	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S23-Au0058327	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S23-Au0058331	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S23-Au0058331	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S23-Au0058331	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S23-Au0058331	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S23-Au0058331	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S23-Au0058331	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-Au0058331	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S23-Au0066997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S23-Au0066997	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S23-Au0066997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S23-Au0066997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	S23-Au0066997	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	S23-Au0066997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S23-Au0066997	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S23-Au0066997	NCP	mg/L	0.0001	0.0001	4.8	30%	Pass	
Nickel	S23-Au0066997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
THOROT	020710000000	1101	mg/ L	₹ 0.001	<u> </u>		3070	1 033	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Hannah Mawbey Analytical Services Manager Fang Yee Tan Senior Analyst-Metal Mary Makarios Senior Analyst-Inorganic Roopesh Rangarajan Senior Analyst-Organic Roopesh Rangarajan Senior Analyst-Volatile Ryan Phillips Senior Analyst-Inorganic

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Checked by	Completion	Completed	
	100	34	
	-		
	-	1	

Subcon Torward Lab / Split WO

Chain of Custody Documentation C 203

the field

Senversa Pty Ltd			Laboratory:	ALS NSW			Ken	delinquisho:	1777	au.	Anal	Analysis Required	
ABN 89 132 231 380			Address: Contact:	Sample Receipt			Lon	onno e / Cc	riei.			100	one the side for many one the teacher. We have
			Phone:	-			WO'N:		Z		2	N	LORs etc.
Job Number:	S2	\$20102	Purchase Order:	(Company) and the second and the sec		F 2.	>	ttached By	PO/Internal				and the control of th
Project Name:	Wetherill	Wetherill Park WME	Quote No:	EN/103/21							- 5	A Distance of the Part of the	The state of the s
Sampled By:	Rowi	Rowan Faint	Turn Around Time:	Standard 7 Days	ays		411/0					14)	
Project Manager:	Emm	Emma Walsh	Page:	3	of 1							, IVI	Environmental Division
	rowan,faint@	rowan.faint@senversa.com.au			ų.	H/BTE	7/018			1		E AN	Sydney
Email Report To:	<u>Bec.Chapple@</u>	Bec.Chapple@sonversa.com.au;	Phone/Mobile:	0408038593, 0404011544	4011544		-			d Tî) T (Work Order Reference
	Sample Information	on		Container Information	mation		-20 (-8	and			ES2404239
Lab ID Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	-	VV-		NT	TP			
QC404	W	9/02/2024		VOA	1 ×	_							
QC504	W	9/02/2024		VOA	X			.5	,				
Z ac303	W	9/02/2024		P, VS x2, N, UA, VSA	O	×				×			
C. MW1	W	9/02/2024		P, VS x2, N, UA, VSA	6	×			×		×		
	W	9/02/2024		P, VS x2, N, UA, VSA	on .	×			×		×	-	■ ここのであることであった。 ■ ここのであることである。
N/M/3	W	9/02/2024		P, VS x2, N, UA, VSA	0	×			×		×		Telephone: +61-2-8784 8555
	W	9/02/2024		P, VS x2, N, UA, VSA	Ø	×			×		×		
2 00103	W	9/02/2024		P, VS x2, N, UA, VSA	6	×				×	×		
QC203	W	9/02/2024		P, VS x2, N, UA, VSA	6	×				×			Please forward to Eurofins
	*												
							1				_		
L L													
μŝ						-					-		
Total	Special and the second	ACCORD AND AND AND AND AND AND AND AND AND AN	is the factories of the contract of the contra	Approximation of the state of t	44			-					
Sampler: I aftest that proper field sampling procedures in accordance with Senversa standard procedures and/or project specifications were used during the collection of these samples:	sampling procedures in a	accordance with S	enversa standard proce	edures and/or project	Sampler Name:	R	Rowan Faint		Signature:	re:	2 rack	E A	Date: 9/02/2024
Relinquished By:	de des en de des constructions en construction de des des des des des des des des des	scelosios/policepolicerenzoowy/sersoy-unitate-abolosione		Method of Shipment (if applicable):	olicable):		Rece	Received by:			NAME OF TAXABLE PARTY.		Name y depoilement registrapoid and conscional conscional companies (secure property and constitution of the constitution of t
Name/Signature:	Rowan Faint		Date: 9/2/24	Carrier / Reference #:			Nam	Name/Signature:	e Was	-	なく		Date: 9/2/24
Of.	Manager of the Common C		Time: 3:30 PM	Date/Time:			Of:	A	S				Time: (630
Name/Signature:			Date:	Carrier / Reference #:			Nam	Name/Signature:	9				Date: 3
Of:	Inflact ferminds do planetomente (consparant) eventas consistentes proposes	oth finicipally-structure description of the commence of commentation described the structure of the structu	Time:	Date/Time:		W. C.	Of:						l.
Name/Signature:			Date:	Carrier / Reference #:			Nam	Name/Signature	(D)				Date: 10/0 11:10
Of:	CONTROL (AND INCIDENT AND INCID		Time:	Time: Date/Time: Time:			Q.						101

2996901

"VEX VIA Vial Hygochloric Acid (HCI) Preserved; VS = VOA Vial Sulphuric Preserved; VSA = Sulphuric Preserved Amber Glass; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Sulphuric Preserved Vial Hygochloric Area (HCI) Preserved Southe; E = EDTA Preserved Wide mouth glass jar in the preserved Wide P

COC_RF_GW sampling.xlsx

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261 Site# 1254

Geelong Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261 Site# 25403

Sydney Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Canberra Brisbane Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 NATA# 1261 Site# 20794

Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Auckland IANZ# 1327

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Auckland (Asb) 35 O'Rorke Road Unit C1/4 Pacific Rise, 43 Detroit Drive Mount Wellington, IANZ# 1308

Tauranga 1277 Cameron Road Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 IANZ# 1290 IANZ# 1402

Sample Receipt Advice

Company name:

Senversa Pty Ltd NSW

Contact name:

Emma Walsh

Project name:

WETHERILL PARK WME

Project ID: Turnaround time:

S20102 5 Day

Date/Time received

Feb 12, 2024 10:00 AM

Eurofins reference

1067666

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

X Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Adam Bateup on phone : or by email: AdamBateup@eurofins.com

Results will be delivered electronically via email to Emma Walsh - Emma.Walsh@senversa.com.au.

Note: A copy of these results will also be delivered to the general Senversa Pty Ltd NSW email address.

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175

+61 3 8564 5000

NATA# 1261

Site# 1254

Geelong 19/8 Lewalan Street Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261 Site# 25403

Sydney 179 Magowar Road Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Canberra Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Auckland Auckland (Asb) 35 O'Rorke Road Unit C1/4 Pacific Rise, 43 Detroit Drive Penrose, Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1327 IANZ# 1308

Received:

Priority:

Contact Name:

Due:

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Rolleston, IANZ# 1290

Feb 19, 2024

Emma Walsh

Feb 12, 2024 10:00 AM

Christchurch Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1402

Company Name:

Address:

web: www.eurofins.com.au

Senversa Pty Ltd NSW

Level 24, 1 Market Street SYDNEY

NSW 2000

Project Name:

WETHERILL PARK WME

Project ID:

S20102

Order No.: Report #:

Phone:

1067666 02 9994 8016

03 9606 0074 Fax:

Eurofins Analytical Services Manager: Adam Bateup

5 Day

		Sa	mple Detail			Eurofins Suite B7	Eurofins Suite B19A: Total N (TKN, NOx), Total P	
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydr	ney Laboratory	NATA # 1261	Site # 18217	•		Х	Х	
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	QC203	Feb 09, 2024		Water	S24-Fe0028297	Х	Х	
Test	Counts					1	1	

Senversa Pty Ltd NSW Level 24, 1 Market Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Emma Walsh

Report 1067666-W

Project name WETHERILL PARK WME

Project ID S20102
Received Date Feb 12, 2024

Client Sample ID			QC203
Sample Matrix			Water
Eurofins Sample No.			S24-Fe0028297
Date Sampled			Feb 09, 2024
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons	<u>'</u>	'	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
ВТЕХ	·	,	
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	73
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix			QC203 Water
Eurofins Sample No.			S24-Fe0028297
Date Sampled			Feb 09, 2024
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	78
p-Terphenyl-d14 (surr.)	1	%	134
Nitrate & Nitrite (as N)	0.05	mg/L	0.11
Nitrate (as N)	0.02	mg/L	0.10
Nitrite (as N)	0.02	mg/L	< 0.02
Phosphate total (as P)	0.01	mg/L	0.05
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.3
Total Nitrogen (as N)*	0.2	mg/L	1.4
Heavy Metals			
Arsenic	0.001	mg/L	0.011
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.005
Copper	0.001	mg/L	0.006
Lead	0.001	mg/L	0.005
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.16
Zinc	0.005	mg/L	0.18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Feb 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Feb 17, 2024	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Feb 17, 2024	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Feb 17, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Feb 21, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	Feb 21, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	Feb 21, 2024	2 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Total Kjeldahl Nitrogen (as N)	Melbourne	Feb 21, 2024	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B19A: Total N (TKN, NOx), Total P			
Phosphate total (as P)	Sydney	Feb 17, 2024	28 Days
- Method: E052 Total Phosphate (as P)			

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261

Geelong 19/8 Lewalan Street Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261 Site# 25403

Canberra Sydney 179 Magowar Road Girraween Mitchell NSW 2145 ACT 2911 +61 2 9900 8400 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 18217 Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794

Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Auckland Auckland (Asb) 35 O'Rorke Road Unit C1/4 Pacific Rise. 43 Detroit Drive Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Due:

Received:

Priority:

Contact Name:

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Feb 12, 2024 10:00 AM

Feb 19, 2024

Emma Walsh

Company Name:

Address:

web: www.eurofins.com.au

Senversa Pty Ltd NSW Level 24, 1 Market Street

SYDNEY

Site# 1254

NSW 2000

Project Name:

WETHERILL PARK WME

Project ID: S20102 Order No.: Report #:

Phone:

1067666 02 9994 8016

03 9606 0074 Fax:

Eurofins Analytical Services Manager: Adam Bateup

5 Day

		Sa	mple Detail			Eurofins Suite B7	Eurofins Suite B19A: Total N (TKN, NOx), Total P
Melb	ourne Laborato	ry - NATA # 12	61 Site # 12	54			Х
Sydr	ey Laboratory	- NATA # 1261	Site # 18217	,		Х	Х
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	QC203	Feb 09, 2024		Water	S24-Fe0028297	Х	Х
Test	Counts					1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within. NCP

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 70 - 130%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	1 3				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	3				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank	- 1 - 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank	,g, <u>_</u>				
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
	III9/⊏	\ 0.001	0.001	1 1 433	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	91	70-130	Pass	
TRH C10-C14	%	96	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
TRH >C10-C16	%	92	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	116	70-130	Pass	
Toluene	%	111	70-130	Pass	
Ethylbenzene	%	109	70-130	Pass	
m&p-Xylenes	%	111	70-130	Pass	
o-Xylene	%	107	70-130	Pass	
Xylenes - Total*	%	109	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	%	91	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	100	70-130	Pass	
Acenaphthylene	%	96	70-130	Pass	
Anthracene	%	97	70-130	Pass	
Benz(a)anthracene	%	102	70-130	Pass	
Benzo(a)pyrene	%	117	70-130	Pass	
Benzo(b&j)fluoranthene	%	98	70-130	Pass	
Benzo(g.h.i)perylene	%	129	70-130	Pass	
Benzo(k)fluoranthene	%	120	70-130	Pass	
Chrysene	%	125	70-130	Pass	
Dibenz(a.h)anthracene	%	118	70-130	Pass	
Fluoranthene	%	116	70-130	Pass	
Fluorene	%	105	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	122	70-130	Pass	
Naphthalene	%	81	70-130	Pass	
Phenanthrene	%	98	70-130	Pass	
Pyrene	%	115	70-130	Pass	
LCS - % Recovery			·		
Nitrate & Nitrite (as N)	%	117	70-130	Pass	
Nitrite (as N)	%	104	70-130	Pass	
Phosphate total (as P)	%	113	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	107	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	101	80-120	Pass	
Cadmium	%	100	80-120	Pass	
Chromium	%	102	80-120	Pass	
Copper	%	103	80-120	Pass	
Lead	%	102	80-120	Pass	
Mercury	%	101	80-120	Pass	
Nickel	%	102	80-120	Pass	
Zinc	%	101	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S24-Fe0035298	NCP	%	84			70-130	Pass	
TRH C10-C14	S24-Fe0029342	NCP	%	88			70-130	Pass	
TRH C6-C10	S24-Fe0035298	NCP	%	82			70-130	Pass	
TRH >C10-C16	S24-Fe0029342	NCP	%	86			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S24-Fe0035298	NCP	%	115			70-130	Pass	
Toluene	S24-Fe0035298	NCP	%	93			70-130	Pass	
Ethylbenzene	S24-Fe0035298	NCP	%	101			70-130	Pass	
m&p-Xylenes	S24-Fe0035298	NCP	%	98			70-130	Pass	
o-Xylene	S24-Fe0035298	NCP	%	99			70-130	Pass	
Xylenes - Total*	S24-Fe0035298	NCP	%	99			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	S24-Fe0035298	NCP	%	79			70-130	Pass	
Spike - % Recovery									
				Result 1					
Nitrate & Nitrite (as N)	L24-Fe0048715	NCP	%	112			70-130	Pass	
Nitrite (as N)	L24-Fe0048715	NCP	%	108			70-130	Pass	
Phosphate total (as P)	S24-Fe0030091	NCP	%	110			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M24-Fe0051544	NCP	%	86			70-130	Pass	
Spike - % Recovery		-							
Heavy Metals				Result 1					
Arsenic	R24-Fe0030398	NCP	%	102			75-125	Pass	
Cadmium	R24-Fe0030398	NCP	%	101			75-125	Pass	
Chromium	R24-Fe0030398	NCP	%	101			75-125	Pass	
Copper	R24-Fe0030398	NCP	%	102			75-125	Pass	
Lead	R24-Fe0030398	NCP	%	101			75-125	Pass	
Mercury	R24-Fe0030398	NCP	%	100			75-125	Pass	
Nickel	R24-Fe0030398	NCP	%	103			75-125	Pass	
Zinc	R24-Fe0030398	NCP	%	100			75-125	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S24-Fe0026053	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S24-Fe0030079	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S24-Fe0030079	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S24-Fe0030079	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	004 5-0000050	NOD			< 0.02	<1	30%	Pass	
	S24-Fe0026053	NCP	mg/L	< 0.02	< 0.02	\ 1	00,0		
TRH >C10-C16	S24-Fe0026053 S24-Fe0030079	NCP NCP		< 0.02 < 0.05	< 0.02	<1	30%	Pass	
		NCP	mg/L		< 0.05			Pass Pass	
TRH >C10-C16	S24-Fe0030079	NCP NCP	mg/L mg/L	< 0.05		<1	30%		
TRH >C10-C16 TRH >C16-C34	S24-Fe0030079 S24-Fe0030079	NCP	mg/L	< 0.05 < 0.1	< 0.05 < 0.1	<1 <1	30% 30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	S24-Fe0030079 S24-Fe0030079	NCP NCP	mg/L mg/L	< 0.05 < 0.1	< 0.05 < 0.1	<1 <1	30% 30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	S24-Fe0030079 S24-Fe0030079 S24-Fe0030079	NCP NCP NCP	mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1	< 0.05 < 0.1 < 0.1	<1 <1 <1	30% 30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX	S24-Fe0030079 S24-Fe0030079	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1	< 0.05 < 0.1 < 0.1	<1 <1 <1 RPD	30% 30% 30%	Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene Ethylbenzene	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.002	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.002 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.002 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.002	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	\$24-Fe0030079 \$24-Fe0030079 \$24-Fe0030079 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053 \$24-Fe0026053	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.002 < 0.001	< 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.002 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
•				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	M24-Fe0051355	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nitrite (as N)	M24-Fe0051355	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	S24-Fe0043848	NCP	mg/L	0.04	0.04	2.3	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M24-Fe0049917	NCP	mg/L	150	110	28	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S24-Fe0030077	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S24-Fe0030077	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S24-Fe0030077	NCP	mg/L	0.003	0.003	8.0	30%	Pass	
Copper	S24-Fe0030077	NCP	mg/L	0.011	0.011	4.5	30%	Pass	
Lead	S24-Fe0030077	NCP	mg/L	0.004	0.004	2.9	30%	Pass	
Mercury	S24-Fe0030077	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S24-Fe0030077	NCP	mg/L	0.004	0.004	7.5	30%	Pass	
Zinc	S24-Fe0030077	NCP	mg/L	0.029	0.028	4.6	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Adam Bateup Analytical Services Manager Fang Yee Tan Senior Analyst-Metal Maria Tian Senior Analyst-Organic Mary Makarios Senior Analyst-Inorganic Roopesh Rangarajan Senior Analyst-Organic Roopesh Rangarajan Senior Analyst-Volatile Ryan Phillips Senior Analyst-Inorganic

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

sonversa

Chain of Custody Documentation

Senversa Pt				Laboratory:	ALS NSW			_						malysis	Required	_	
ABN 89 132				Address: Contact: Phone;	Sample Receipt									dialysis	Required		Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.
Job Number	n	\$2	0102	Purchase Order:													
Project Nam	e:		Park WME	Quote No:	EN(103\21				Ş Ç								
Sampled By	:	Rowa	an Faint	Turn Around Time:	Standard				Fe and Mn)		etals						
Project Man	ager:		a Walsh	Page:		of 1			Fe "		W W	NX					' I
		rowan.faint@:	senversa.com.au senversa.com.au			OI I			WATER - EG005F Dissolved Metals (WATER - W-26 TRH/BTEXN/PAH/8 Metals	WATER - W-18 TRH(C6 - C9)/BTEXN	- EP080				
Email Repor	t To:		senversa.com.au	Phone/Mobile:	0420 218 472				R-E		TEX:	8-9 0-8	~ - H	Z			
Lab ID	Sample ID	Sample Information		-	Container Inform				ATE	8-TV	ATE H/B	ATE O	WATER BTEXN	and		HOLD	
2	MW1	Water	Date .	Time	Type / Code	Total Bottles	-				_	≥ E	§ ₽	₽		포	
	MVV2		11/07/2024		1xP, 2xVSA, 1xN, 1xUA, 1xSP	6			X	Х	Х						
3	MVV3	Water	11/07/2024		1xP, 2xVSA, 1xN, 1xUA, 1xSP	6			Х	Х	Х						
4		Water	11/07/2024		1xP, 2xVSA, 1xN, 1xUA, 1xSP	- 6			Х	Х	Х						
-	MW4	Water	11/07/2024		1xP, 2xVSA, 1xN, 1xUA, 1xSP	6			Х	Х	Х						
5	MVV6	Water	11/07/2024		1xP, 2xVSA, 1xN, 1xUA, 1xSP	6			X	X	X						*===
6	QC104	Water	11/07/2024		2xVSA, 1xN, 1xUA, 1xSP	5			Х		Х			Х			
_	QC204	Water	11/07/2024		2xVSA, 1xN, 1xUA, 1xSP	5			Х		Х			Х			Please forward to Eurofins
-3	QC304	Water	11/07/2024		2xVSA, 1xN, 1xUA, 1xSP	5			X		Х			Х			
Je.	QC405	Water	11/07/2024		VSA	1						X					
34	QC505	Water	11/07/2024		VSA	1						~	Х		_	_	
							$\overline{}$				-	-	^		_	+	-
							_	_	-			_	_		_	-	
							-	_	_	-	-	-	-	_	_	_	
8							-	-		_	-	-	-	_		_	
							-				-		_		_		
			-				-		_			-					
		- 7		-													
-	1	11	111														
	1//																
		-						孤									
								9/1/20	Nº S							1	
								懲									
	N.		0					100		- 4						_	
		1/0	,								\neg	-		-	_	+	
		MD					\rightarrow	_				-	-		_		
							-	-	_	-	-	-	-	-	_	-	
					 		-	-	\rightarrow	\rightarrow	-	-	-	-	_	+	
Total			الرزائدي			47			- 3					31			
Sampler: I at	test that proper field sampli s were used during the coll	ng procedures in a	ccordance with Se	nversa standard proc	edures and/or project	Sampler Name:		Rowan	Faint		Signatur	e:	$\overline{}$			Date:	11/07/2024
		ection of these san	ipies.						_		_	-1	4	au			
Relinquished Name/Signati		Bauma Estat		0.1	Method of Shipment (if applica	able):			Receive								1-1-
Name/Signati Of:		Rowan Faint Senversa		Date: Time:	Carrier / Reference #:		_	$\overline{}$		gnature:	7	nenh		L			Date: 11/7/17
Name/Signate		Octivored.		Date:	Date/Time:			\rightarrow	Of:		A	0.0	1				Time: ,715
Of:				Time:	Carrier / Reference #: Date/Time:				Vame/Si Of:	gnature:	_	en	Jun.	_			Date: 5/7/2
Name/Signatu	ıre;			Date:	Carrier / Reference #:		_			gnature:	n				_		Tittle.
Of:				Time:	Date/Time:				26.								Date:
W	fater Container Codes: P = Ur	preserved Plastic; N =	Nitric Acid (HNO ₃) Pr	eserved Plastic; ORC = N	iltric Preserved ORC; SH = Sodium Hy	droxide (NaOH)/Cad	Intium (Co	d) Presei	ved; S =	Sodium I	Hydroxide	Preserve	d Plastic	: STH = 8	odium thiosul	fate preserv	ved plastic;

V = VOA Vial Hydochloric Acid (HCI) Preserved; VS = VOA Vial Sulphuric Preserved; VSA = Sulphuric Preserved Amber Glass; H ≈ HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Sulphuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST ≈ Sterile Bottle; UA = Unpreserved Amber Glass; L=Lugol's iodine preserved white plastic bottle; SW= sulfuric acid preserved wide mouth glass jar

1517

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Geelong Melbourne 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street Dandenong South Grovedale VIC 3175 VIC 3216 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403

Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Newcastle 1/21 Smallwood Place 1/2 Frost Drive Mayfield West Murarrie QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Ranksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

ABN: 47 009 120 549

Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

35 O'Rorke Road Unit C1/4 Pacific Rise 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Tauranga 1277 Cameron Road Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Sample Receipt Advice

Company name: Contact name: Project name: Project ID:

Turnaround time:

Senversa Pty Ltd NSW Emma Walsh WETHERILL PARK WME S20102

5 Day Jul 15, 2024 2:30 PM

Date/Time received 1117968 **Eurofins reference**

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Adam Bateup on phone: or by email: AdamBateup@eurofins.com

Results will be delivered electronically via email to Emma Walsh - Emma.Walsh@senversa.com.au.

Note: A copy of these results will also be delivered to the general Senversa Pty Ltd NSW email address.

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra Brisbane 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell Murarrie VIC 3175 VIC 3216 NSW 2145 ACT 2911 QLD 4172 +61 3 8564 5000 +61 2 9900 8400 T: +61 7 3902 4600 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 1254 Site# 25403 Site# 18217 Site# 25466

ABN: 47 009 120 549

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland Auckland (Focus) 35 O'Rorke Road Unit C1/4 Pacific Rise. Penrose, Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1327 IANZ# 1308

NZBN: 9429046024954

Received:

Contact Name:

Priority:

Due:

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tauranga 3112 +64 3 343 5201 IANZ# 1290

Jul 15, 2024 2:30 PM

Jul 22, 2024

Emma Walsh

5 Day

Tauranga 1277 Cameron Road. Gate Pa, +64 9 525 0568 IANZ# 1402

Address

web: www.eurofins.com.au

Company Name: Senversa Pty Ltd NSW Level 24, 1 Market Street

SYDNEY NSW 2000

Project Name: Project ID:

WETHERILL PARK WME

S20102

Order No.: Report #:

Perth

Welshpool

NATA# 2377

Site# 2370

WA 6106

Newcastle

Mayfield West

+61 2 4968 8448

NSW 2304

NATA# 1261

Site# 25079

ABN: 91 05 0159 898

46-48 Banksia Road

+61 8 6253 4444

1117968

Phone: 02 9994 8016 03 9606 0074 Fax:

Eurofins Analytical Services Manager: Adam Bateup

		Sa	mple Detail			Iron (filtered)	Manganese (filtered)	Total Recoverable Hydrocarbons	Eurofins Suite B7 (filtered metals)
Sydr	ey Laboratory	- NATA # 1261	Site # 18217	,		Χ	Х	Х	Χ
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	QC204	Jul 11, 2024		Water	S24-JI0037338	Х	Х	Х	Х
Test	Counts					1	1	1	1

Senversa Pty Ltd NSW Level 24, 1 Market Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Emma Walsh

Report 1117968-W

Project name WETHERILL PARK WME

Project ID S20102
Received Date Jul 15, 2024

Client Sample ID			QC204
Sample Matrix			Water
Eurofins Sample No.			S24-JI0037338
Date Sampled			Jul 11, 2024
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons	'	'	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	0.09
TRH C15-C28	0.1	mg/L	0.4
TRH C29-C36	0.1	mg/L	0.3
TRH C10-C36 (Total)	0.1	mg/L	0.79
TRH C6-C10*	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16*	0.05	mg/L	0.11
TRH >C10-C16 less Naphthalene (F2)*N01	0.05	mg/L	0.11
TRH >C16-C34*	0.1	mg/L	0.6
TRH >C34-C40	0.1	mg/L	0.2
TRH >C10-C40 (total)*	0.1	mg/L	0.91
ВТЕХ	•		
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	73
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	-	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Polycyclic Aromatic Hydrocarbons	·		
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix			QC204 Water
Eurofins Sample No.			S24-JI0037338
Date Sampled			Jul 11, 2024
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	78
p-Terphenyl-d14 (surr.)	1	%	109
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05
Nitrate (as N)	0.02	mg/L	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02
Phosphate total (as P)	0.01	mg/L	0.03
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0
Total Nitrogen (as N)*	0.2	mg/L	1.0
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.01
Cadmium (filtered)	0.0002	mg/L	< 0.002
Chromium (filtered)	0.001	mg/L	< 0.01
Copper (filtered)	0.001	mg/L	< 0.01
Iron (filtered)	0.05	mg/L	7.4
Lead (filtered)	0.001	mg/L	< 0.01
Manganese (filtered)	0.005	mg/L	7.4
Mercury (filtered)	0.0001	mg/L	< 0.001
Nickel (filtered)	0.001	mg/L	0.20
Zinc (filtered)	0.005	mg/L	0.25

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 17, 2024	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jul 17, 2024	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 17, 2024	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Sydney	Jul 17, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Jul 17, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrate (as N)	Melbourne	Jul 17, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Nitrite (as N)	Melbourne	Jul 17, 2024	2 Days
- Method: LTM-INO-4450 Nitrogens by Discrete Analyser			
Total Kjeldahl Nitrogen (as N)	Melbourne	Jul 17, 2024	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Phosphate total (as P)	Sydney	Jul 17, 2024	28 Days
- Method: E052 Total Phosphate (as P)			
Heavy Metals (filtered)	Sydney	Jul 17, 2024	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra Brisbane 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell Murarrie VIC 3175 VIC 3216 NSW 2145 ACT 2911 QLD 4172 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 1254 Site# 25403 Site# 18217 Site# 25466

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

web: www.eurofins.com.au

Company Name: Senversa Pty Ltd NSW Level 24, 1 Market Street

SYDNEY NSW 2000

Project Name: Project ID:

WETHERILL PARK WME

S20102

Order No.: Report #: Phone:

Fax:

Newcastle

Mayfield West

+61 2 4968 8448

NSW 2304

NATA# 1261

Site# 25079

1117968 02 9994 8016 03 9606 0074

Perth ProMicro

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

46-48 Banksia Road

Received: Jul 15, 2024 2:30 PM Jul 22, 2024 Due: Priority: 5 Dav

Contact Name: Emma Walsh

Eurofins Analytical Services Manager: Adam Bateup

		Sa	mple Detail			Iron (filtered)	Manganese (filtered)	Total Recoverable Hydrocarbons	Eurofins Suite B7 (filtered metals)
Sydr	ney Laboratory	NATA # 1261	Site # 18217	•		Χ	Χ	Х	Χ
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	QC204	Jul 11, 2024		Water	S24-JI0037338	Х	Х	Х	Х
Test	Counts					1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

Client Parent - QC was performed on samples pertaining to this report CP CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
TRH C6-C10*	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16*	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34*	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ıs				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank		1 9.9 .	1 9.0.	1 466	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	ı ıııg/ L	V 0.001	0.001	1 400	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.02	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.01	Pass	
Method Blank	IIIg/L	\ U.Z	0.2	1 055	
Heavy Metals		T T			
Arsenic (filtered)	ma/l	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L		0.001	Pass	
· · · · ·	mg/L	< 0.0002		1	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	104	70-130	Pass	
TRH C10-C14	%	77	70-130	Pass	
TRH C6-C10*	%	105	70-130	Pass	
TRH >C10-C16*	%	75	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	100	70-130	Pass	
Toluene	%	111	70-130	Pass	
Ethylbenzene	%	109	70-130	Pass	
m&p-Xylenes	%	113	70-130	Pass	
o-Xylene	%	109	70-130	Pass	
Xylenes - Total*	%	112	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	%	112	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	112	70-130	Pass	
Acenaphthylene	%	109	70-130	Pass	
Anthracene	%	118	70-130	Pass	
Benz(a)anthracene	%	107	70-130	Pass	
Benzo(a)pyrene	%	109	70-130	Pass	
Benzo(b&j)fluoranthene	%	109	70-130	Pass	
Benzo(g.h.i)perylene	%	110	70-130	Pass	
Benzo(k)fluoranthene	%	104	70-130	Pass	
Chrysene	%	114	70-130	Pass	
Dibenz(a.h)anthracene	%	111	70-130	Pass	
Fluoranthene	%	117	70-130	Pass	
Fluorene	%	117	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	109	70-130	Pass	
Naphthalene	%	84	70-130	Pass	
Phenanthrene	%	122	70-130	Pass	
Pyrene	%	117	70-130	Pass	
LCS - % Recovery					
Nitrate & Nitrite (as N)	%	103	70-130	Pass	
Nitrite (as N)	%	106	70-130	Pass	
Phosphate total (as P)	%	105	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	76	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic (filtered)	%	91	80-120	Pass	
Cadmium (filtered)	%	93	80-120	Pass	
Chromium (filtered)	%	91	80-120	Pass	
Copper (filtered)	%	91	80-120	Pass	
Iron (filtered)	%	89	80-120	Pass	
Lead (filtered)	%	89	80-120	Pass	
Manganese (filtered)	%	92	80-120	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Mercury (filtered)			%	100	80-120	Pass	
Nickel (filtered)			%	92	80-120	Pass	
Zinc (filtered)			%	91	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	5			Result 1			
TRH C6-C9	S24-JI0038805	NCP	%	81	70-130	Pass	
TRH C10-C14	S24-JI0037155	NCP	%	81	70-130	Pass	
TRH C6-C10*	S24-JI0038805	NCP	%	81	70-130	Pass	
TRH >C10-C16*	S24-JI0037155	NCP	%	82	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S24-JI0038805	NCP	%	77	70-130	Pass	
Toluene	S24-JI0038805	NCP	%	87	70-130	Pass	
Ethylbenzene	S24-JI0038805	NCP	%	86	70-130	Pass	
m&p-Xylenes	S24-JI0038805	NCP	%	92	70-130	Pass	
o-Xylene	S24-JI0038805	NCP	%	88	70-130	Pass	
Xylenes - Total*	S24-JI0038805	NCP	%	90	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S24-JI0038805	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	W24-JI0032492	NCP	%	103	70-130	Pass	
Acenaphthylene	W24-JI0032492	NCP	%	100	70-130	Pass	
Anthracene	W24-JI0032492	NCP	%	111	70-130	Pass	
Benz(a)anthracene	W24-JI0032492	NCP	%	99	70-130	Pass	
Benzo(a)pyrene	W24-JI0032492	NCP	%	102	70-130	Pass	
Benzo(b&j)fluoranthene	W24-JI0032492	NCP	%	99	70-130	Pass	
Benzo(g.h.i)perylene	W24-JI0032492	NCP	%	103	70-130	Pass	
Benzo(k)fluoranthene	W24-JI0032492	NCP	%	102	70-130	Pass	
Chrysene	W24-JI0032492	NCP	%	105	70-130	Pass	
Dibenz(a.h)anthracene	W24-JI0032492	NCP	%	102	70-130	Pass	
Fluoranthene	W24-JI0032492	NCP	%	110	70-130	Pass	
Fluorene	W24-JI0032492	NCP	%	111	70-130	Pass	
Indeno(1.2.3-cd)pyrene	W24-JI0032492	NCP	%	103	70-130	Pass	
Naphthalene	W24-JI0032492	NCP	%	79	70-130	Pass	
Phenanthrene	W24-JI0032492	NCP	%	116	70-130	Pass	
Pyrene	W24-JI0032492	NCP	%	111	70-130	Pass	
Spike - % Recovery				1			
				Result 1			
Nitrate & Nitrite (as N)	M24-JI0040441	NCP	%	113	70-130	Pass	
Nitrite (as N)	M24-JI0040441	NCP	%	100	70-130	Pass	
Phosphate total (as P)	S24-JI0037338	CP	%	79	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M24-JI0014226	NCP	%	98	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic (filtered)	S24-JI0045319	NCP	%	88	75-125	Pass	
Cadmium (filtered)	S24-JI0045319	NCP	%	95	75-125	Pass	
Chromium (filtered)	S24-JI0045319	NCP	%	88	75-125	Pass	
Copper (filtered)	S24-JI0045319	NCP	%	90	75-125	Pass	
Iron (filtered)	S24-JI0045319	NCP	%	91	75-125	Pass	
Lead (filtered)	S24-JI0045319	NCP	%	87	75-125	Pass	
Manganese (filtered)	S24-JI0045319	NCP	%	91	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury (filtered)	S24-JI0045319	NCP	%	94			75-125	Pass	
Nickel (filtered)	S24-JI0045319	NCP	%	90			75-125	Pass	
Zinc (filtered)	S24-JI0045319	NCP	%	93			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S24-JI0038806	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S24-JI0037154	NCP	mg/L	0.06	0.07	13	30%	Pass	
TRH C15-C28	S24-JI0037154	NCP	mg/L	0.3	0.2	19	30%	Pass	
TRH C29-C36	S24-JI0037154	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10*	S24-JI0038806	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16*	S24-JI0037154	NCP	mg/L	0.08	0.09	5.7	30%	Pass	
TRH >C16-C34*	S24-JI0037154	NCP	mg/L	0.3	0.2	26	30%	Pass	
TRH >C34-C40	S24-JI0037154	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S24-JI0038806	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S24-JI0038806	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S24-JI0038806	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S24-JI0038806	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S24-JI0038806	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S24-JI0038806	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate		,	J	•			•		
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	tions		Result 1	Result 2	RPD			
Naphthalene	S24-JI0038806	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarboi	ns			Result 1	Result 2	RPD			
Acenaphthene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&i)fluoranthene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	N24-JI0037864	NCP		< 0.001			30%	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene	N24-JI0037864 N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1 <1	30%	Pass	
Phenanthrene	N24-JI0037864 N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
			mg/L	1	< 0.001	<1			
Pyrene	N24-JI0037864	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				Danista	Decition	DDD			
Alteria O Alteria (All	DO4 H0007503	NCD		Result 1	Result 2	RPD	0001	D-	
Nitrate & Nitrite (as N)	B24-JI0037599	NCP	mg/L	0.39	0.38	3.0	30%	Pass	
Nitrite (as N)	B24-JI0037599	NCP	mg/L	0.25	0.25	<1	30%	Pass	
Phosphate total (as P)	N24-JI0035143	NCP	mg/L	7.7	7.7	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	S24-JI0038669	NCP	mg/L	1500	1700	8.3	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S24-JI0045318	NCP	mg/L	0.002	0.002	4.4	30%	Pass	
Cadmium (filtered)	S24-JI0045318	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S24-JI0045318	NCP	mg/L	0.12	0.12	2.2	30%	Pass	
Copper (filtered)	S24-JI0045318	NCP	mg/L	0.002	0.002	11	30%	Pass	
Iron (filtered)	S24-JI0045318	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	S24-JI0045318	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	S24-JI0045318	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	S24-JI0045318	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S24-JI0045318	NCP	mg/L	0.002	0.001	32	30%	Fail	Q15
Zinc (filtered)	S24-JI0045318	NCP	mg/L	0.005	< 0.005	10	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Q15

Nileshni Goundar Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Maria Tian Senior Analyst-Organic Mickael Ros Senior Analyst-Metal Roopesh Rangarajan Senior Analyst-Organic Roopesh Rangarajan Senior Analyst-Volatile Ryan Phillips Senior Analyst-Inorganic

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F: Mann Kendall Groundwater Trend Analysis

Location	Chem Name	Unit	Earliest	Latest	number_results	number_detects	minimum	maximum	average	percentile80	mann_kendall_trend
Code MW1	Phenol	μg/L	8-Feb-23	8-Feb-23	1	0	<1.0	<1.0	1	1	
MW1	Nitrate (as N)	mg/L	8-Feb-23	11-Jul-24	4		<0.01	<0.1	0.035		No Trend
MW1	Manganese	mg/L	8-Feb-23	11-Jul-24	4		0.59	4.84	2.1525		Stable
MW1	Nickel	mg/L	8-Feb-23	11-Jul-24	4		0.015	0.156	0.0575		No Trend
MW1	Arsenic	mg/L	8-Feb-23	11-Jul-24	4	4	0.007	0.012	0.0095	0.0114	Stable
MW1	Chromium	mg/L	8-Feb-23	11-Jul-24	4	0	< 0.001	<0.001	0.001	0.001	
MW1	Copper	mg/L	8-Feb-23	11-Jul-24	4	2	< 0.001	0.015	0.005	0.0078	No Trend
MW1	Zinc	mg/L	8-Feb-23	11-Jul-24	4	4	0.012	0.174	0.06175	0.0966	No Trend
MW1	Ammonia (as N)	mg/L	8-Feb-23	11-Jul-24	4	4	0.19	0.71	0.4675	0.578	Decreasing
MW1	Total BTEX	μg/L	8-Feb-23	11-Jul-24	4	0	<1.0	<1.0	1	1	
MW1	>C10-C40 Fraction (Sum)	μg/L	8-Feb-23	11-Jul-24	4	1	<100.0	520.0	205	268	No Trend
MW1	C6-C10 Fraction minus BTEX (F1)	μg/L	8-Feb-23	11-Jul-24	4		<20.0	<20.0	20	20	
MW1	Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L	8-Feb-23	11-Jul-24	4		<0.5	<0.5	0.5	0.5	
MW2	Phenol	μg/L	8-Feb-23	8-Feb-23	1		<1.0	<1.0	1	1	
MW2	Nitrate (as N)	mg/L	8-Feb-23	11-Jul-24	4		2 <0.01	0.03	0.0175		Stable
MW2	Manganese	mg/L	8-Feb-23	11-Jul-24	4		0.96	3.28	1.75		Increasing
MW2	Nickel	mg/L	8-Feb-23	11-Jul-24	4		0.005	0.006	0.00575		Stable
MW2	Arsenic	mg/L	8-Feb-23	11-Jul-24	4		0.004	0.008	0.005	0.0056	
MW2	Chromium	mg/L	8-Feb-23	11-Jul-24	4		< 0.001	<0.001	0.001	0.001	
MW2	Copper	mg/L	8-Feb-23	11-Jul-24	4		<0.001	0.011	0.0035		No Trend
MW2	Zinc	mg/L	8-Feb-23	11-Jul-24	4		< 0.005	0.009	0.00775		Stable Stable
MW2	Ammonia (as N)	mg/L	8-Feb-23	11-Jul-24	4		0.26	0.52	0.435		Stable
MW2	Total BTEX	μg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		<1.0	<1.0 <100.0	100	100	
MW2 MW2	>C10-C40 Fraction (Sum)	μg/L	8-Feb-23 8-Feb-23	11-Jul-24 11-Jul-24	4		0 <100.0 0 <20.0	<20.0	20	20	
MW2	C6-C10 Fraction minus BTEX (F1) Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		0 < 0.5	<0.5	0.5	0.5	
MW3	Phenol	μg/L	8-Feb-23	8-Feb-23	1		<1.0	<1.0	0.3	0.3	
MW3	Nitrate (as N)	μg/L mg/L	8-Feb-23	11-Jul-24	7		3 < 0.01	0.1	0.028571429		No Trend
MW3	Manganese	mg/L	8-Feb-23	11-Jul-24	11		5.8	7.4	6.533636364		Increasing
MW3	Nickel	mg/L	8-Feb-23	11-Jul-24	12		0.16	0.207	0.189833333		Stable
MW3	Arsenic	mg/L	8-Feb-23	11-Jul-24	12		0.002	0.011	0.00775		Stable
MW3	Chromium	mg/L	8-Feb-23	11-Jul-24	12		3 < 0.001	<0.01	0.00675		Stable
MW3	Copper	mg/L	8-Feb-23	11-Jul-24	12		3 < 0.001	<0.01	0.006833333		Stable
MW3	Zinc	mg/L	8-Feb-23	11-Jul-24	12		0.074	0.253	0.195416667	0.2462	
MW3	Ammonia (as N)	mg/L	8-Feb-23	11-Jul-24	4		0.22	0.29	0.27		Stable
MW3	Total BTEX	μg/L	8-Feb-23	11-Jul-24	8	0	<1.0	<1.0	1	1	
MW3	>C10-C40 Fraction (Sum)	μg/L	8-Feb-23	11-Jul-24	12	4	<100.0	910.0	226.6666667	346	No Trend
MW3	C6-C10 Fraction minus BTEX (F1)	μg/L	8-Feb-23	11-Jul-24	12	0	<10.0	<20.0	19.16666667	20	Stable
MW3	Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L	8-Feb-23	11-Jul-24	11	0	<0.5	<1.0	0.636363636	1	Stable
MW4	Phenol	μg/L	8-Feb-23	8-Feb-23	1	0	<1.0	<1.0	1	1	
MW4	Nitrate (as N)	mg/L	8-Feb-23	11-Jul-24	4	1	0.01	<0.01	0.01	0.01	
MW4	Manganese	mg/L	8-Feb-23	11-Jul-24	4	4	4.0	6.04	5.13	5.686	Stable
MW4	Nickel	mg/L	8-Feb-23	11-Jul-24	4	4	0.011	0.021	0.01725	0.0204	Decreasing
MW4	Arsenic	mg/L	8-Feb-23	11-Jul-24	4	4	0.005	0.008	0.00675	0.0074	Stable
MW4	Chromium	mg/L	8-Feb-23	11-Jul-24	4		<0.001	<0.001	0.001	0.001	
MW4	Copper	mg/L	8-Feb-23	11-Jul-24	4		<0.001	0.005	0.002		No Trend
MW4	Zinc	mg/L	8-Feb-23	11-Jul-24	4		. <0.005	0.006	0.00525	0.0054	
MW4	Ammonia (as N)	mg/L	8-Feb-23	11-Jul-24	4		0.28	0.34	0.31		Decreasing
MW4	Total BTEX	μg/L	8-Feb-23	11-Jul-24	4		<1.0	2.0	1.25		Stable
MW4	>C10-C40 Fraction (Sum)	μg/L	8-Feb-23	11-Jul-24	4		<100.0	<100.0	100	100	
MW4	C6-C10 Fraction minus BTEX (F1)	μg/L	8-Feb-23	11-Jul-24	4		<20.0	<20.0	20	20	
MW4	Sum of Polycyclic aromatic hydrocarbons (PAH)	μg/L	8-Feb-23	11-Jul-24	4		<0.5	<0.5	0.5	0.5	
MW6	Phenol Nitrate (as Ni)	μg/L	8-Feb-23	8-Feb-23	1		<1.0	<1.0	-	-	Ctable
MW6 MW6	Nitrate (as N)	mg/L	8-Feb-23 8-Feb-23	11-Jul-24	4		0.18 <0.01	1.93 0.225	1.1875 0.08375		Stable No Trend
	Manganese Nickel	mg/L	8-Feb-23 8-Feb-23	11-Jul-24 11-Jul-24	4		2 <0.01 2 <0.001		0.08375	0.126	
MW6 MW6	Arsenic	mg/L mg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		2 <0.001 2 <0.001	0.002	0.00125		Stable
MW6	Chromium	mg/L mg/L	8-Feb-23 8-Feb-23	11-Jul-24 11-Jul-24	4		0.001	<0.002	0.0015	0.002	
MW6	Copper	mg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		. <0.001	0.001	0.001	0.001	
MW6	Zinc	mg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		. <0.001	0.005	0.0015	0.0018	
MW6	Ammonia (as N)	mg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		! <0.005 ! <0.01	0.006	0.00325		No Trend
MW6	Total BTEX	μg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		<1.0	<1.0	0.0323	0.048	
	>C10-C40 Fraction (Sum)	μg/L μg/L	8-Feb-23	11-Jul-24 11-Jul-24	4		<1.0	<1.0	100	100	
N/I/A/6		μ8/ L	0-1-60-23	11-Jul-24	4	U	, 100.0	-100.0	100	100	
MW6 MW6	C6-C10 Fraction minus BTEX (F1)	μg/L	8-Feb-23	11-Jul-24	4	0	<20.0	<20.0	20	20	

Senversa Pty Ltd

ABN 89 132 231 380 www.senversa.com.au enquiries@senversa.com.au LinkedIn: Senversa

LinkedIn: Senversa Facebook: Senversa

To the extent permissible by law, Senversa shall not be liable for any errors, omissions, defects or misrepresentations, or for any loss or damage suffered by any persons (including for reasons of negligence or otherwise).

©2024 Senversa Pty Ltd

Appendix B – Example Quarterly OEMP Checklist

•	RECYCLING	AN – WETHERILL PARK	INS	SPECTION	CHECK	KLIST
Locat	tion:	reDirect – Wetherill Park	D	ate:	28.06.2	4
Inspe	ection Completed By:	M.Stewart	Si	gnature:	m. P	Stewart
1. Ge	neral Management and m	nitigations \square N/A		Frequency	Y/N/NA	General Comments
1.2	Employees and contract trained.	ors have been inducted and are suitab	As required	Y		
1.3	Plant and equipment be the start of the day?	ing used is in good working condition	at	Daily	Y	
2. Tra	iffic mitigations \Box N	I/A	Frequency	Y/N/NA	General Comments	
2.1	Traffic is continually mo	onitored by Operations Coordinator?		Daily	Υ	
2.2	Alll car spaces are free to	from obstruction and maintained for upress?	ise	Daily	Y	
2.3	Vehicles are entering ar	nd leaving the site in forward direction	١.	Daily	Υ	
2 Air	quality odour and dust r	nitigations N/A		Frequency	Y/N/NA	General Comments
3. All	3. Air quality, odour and dust mitigations □ N/A Good dust management procedures are being implemented				T/IV/IVA	General Comments
3.1	(inside building): Sweeper working and be		Daily	Y		
3.2	Good dust management procedures are implemented (outside the building): Sweeper working and being used?				Υ	
3.3	Residual waste has been waste bin capacity)?	n transported offsite (check general		Daily	Υ	
5. Sto	rmwater mitigations	N/A		Frequency	Y/N/NA	General Comments
5.1	Are there any spills that	t have been left unattended?		Daily	N	
5.2		s been inspected for any build up of and vegetation within drainage systen	n?	Monthly	Υ	
5.3	If materials identified in removed?	stormwater drains, has it been		Monthly	Y	
5.4	Inflow areas and pit gra	tes have been inspected and clear of		Monthly	Y	
5.5	1 1	aters, first flush devices and litter and are operating correctly.		Monthly	Y	
5.6	Site structires to be regularly checked for erosion and scouring			Monthly	Υ	
5.7	5.7 Treatment areas and structures will be regularly checked for the build up of litter material				Υ	
5.8	collected sediment, del	ect internal walls and base. Remove ar oris, litter and vegetation. Inspect and lowing any removal of objects. Ensure e upon refitment.		Quarterly (Mar, Jun, Sep, Dec)	Y	Lift grate, brush out lip for grate and down walls remove debris replace grate
5.9	Have all drainage struct	cures been inspected noting any	Bi-			

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC								
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:			
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	1 of 4			

annually

(Jun, Dec)

Inspected no action required

dilapidation, if so have repairs been carried out?

5.10	Rainwater tank – has tank been checked for evidence of litter and functioning properly	Bi- annually (Jun, Dec)	Y	Check Basket – no litter
5.11	Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)	Bi- annually (Jun, Dec)	Υ	Empty tank inspect no sign of pests
5.12	Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.	Bi- annually (Jun, Dec)	Y	No repairs required
5.13	The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.	Bi- annually (Jun, Dec)	Y	Checked no action required
6. Ver	min and pest management mitigations N/A	Frequency	Y/N/NA	General Comments
6.1	Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.	Ongoing	Υ	
6.2	Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.	Ongoing	Υ	
6.3	All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.	Ongoing	Y	
7. Pol	lution management mitigations	Frequency	Y/N/NA	General Comments
7.1	Are all dangerous goods stored appropriately according to their ADG classes and compatibility?	Daily	Υ	
7.2	Has training on the pollution incident response management plan been provided in toolbox?	As required	Υ	
8. Fire	e management mitigations	Frequency	Y/N/NA	General Comments
8.1	Fire extinguishers are positioned at readily accessible points, including on mobile plant	Daily	Y	
9. Noi	se and vibration mitigations \square N/A	Frequency	Y/N/NA	General Comments
9.1	Are defective plant parked up and not being used?	As required	Υ	
10. W	aste management mitigations	Frequency	Y/N/NA	General Comments
10.1	All waste stored on site onsite is permitted by the EPL?	Daily	Y	
10.2	The total amount of waste stored at the premises is under EPL Authorised Amount?	Daily	Y	
10.3	The total amount of waste received daily is being recorded via the weighbridges in place?	Daily	Y	
	ooding mitigations	Frequency	Y/N/NA	General Comments
11. Flo	- NA			
11. Flo	Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition.	Bi- annually (Jun, Dec)	Υ	Fully stocked and in good condition

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	2 of 4		

12. Bi	odiversity 🗆 N/A	Frequency	Y/N/NA	General Comments
12.1	Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015.	Quarterly (Mar, Jun, Sep, Dec)	Y	

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	3 of 4		

Action Plan - to be	transferred as a 'Ha	zard Report'		
Actions required	Action assigned to	Date assigned	Date to be completed	Signature
Storage and Reference	Inspection Comple	eted By		Date
To be reviewed at Site Meeting.				
Workplace inspection checklists must be complete the end of each day.	ddaily, stored in the	site file and u	ploaded to Dat	astation before

Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC							
Approved By:	Date Issued:	Version:	Review Date:	Author:	Page Number:		
Environmental Manager	21/06/2022	1.0	21/06/2025	Environmental Manager	4 of 4		

Appendix C – Appendix D – Community Complaints

Complaint No	Category	Date Received	Property	Detail	Follow Up Actions
NIL	-	-	-	-	-

Blank Page